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Abstract 

A comparative study was conducted about the acquisition of diminutive forms in the Dutch language. A former study, using the C4.5 
algorithm, is discussed and contrasted with the implemented Minimal Generalization model by Albright and Hayes. In addition, the model 
is also compared to a conducted behavioral study with 29 participants using wug-words that follow the Dutch phonetic rules, but do not 
exist in the language. The Minimal Generalization model is very good in creating the correct diminutive forms from lemmas. In addition 
the model corresponds quite well with the behavioral data. This leads the authors to believe that the model’s method of learning the 
necessary rules for this task displays characteristic similarities to the way humans learn these rules. 
  

1. Introduction 

One of the bigger debates on language acquisition is the 
question whether humans have innate knowledge for 
learning a language. Scientists in favor (see Chomsky, 
1965) argue that it is not possible to learn certain aspects of 
language without such innateness, whereas others believe 
the received input has enough information to allow 
extraction of all necessary knowledge (for discussion on 
grammatical class extraction, see Mintz et al., 1995). 

This debate has been going on for decades, and is far 
from being decided. A strong argument in favor of 
innateness is the argument from the poverty of stimulus 
(Chomsky, 1980; Crain et al., 2001). It is believed that the 
language exposure children receive is not enough to explain 
some aspects of adult language. Complicated sets of rules 
and their exceptions are deemed impossible to learn from 
the available input, either because it does not contain any 
instances from which to acquire the knowledge, or it does 
not contain enough. Studies on the actual input children 
receive are difficult and often inconclusive, but seem to 
indicate that the argument from the poverty of stimulus is 
not as strong as widely assumed (Pullum et al., 2002). 

A more direct and powerful technique to see whether 
natural exposure to language contains enough information 
is the use of computational models. When a naïve learner is 
capable of extracting the necessary classifications or rules, 
then innateness is not critical. It is currently impossible to 
construct a full computational implementation of a system 
capable of learning a natural language, therefore small parts 
of language are tested with narrow models. The model used 
in this paper will represent such a naïve learner, which will 

not have any a priori knowledge on the rules that need to be 
learned. Some feature extraction knowledge will be build 
in, to allow the model to interpret the input-data and learn 
from it. It is therefore not a study aimed at disproving or 
weakening innateness as a theory of language acquisition, 
but the following paper will test an already available model 
that could prove useful for doing just that. 

The learning problem at hand is the acquisition of rules 
necessary to form Dutch diminutives from noun-lemmas. 
Only a single study focusing on the same problem using 
machine learning has been discovered in the literature, 
which will be discussed briefly and offers some interesting 
comparisons. An explanation of the theory behind the 
chosen model will follow, and it will be argued why this 
model is preferred to the alternative. A parallel survey-
study provides data about the native speaker’s behavior in 
using Dutch diminutives, which enables a comparison 
between the implemented method and the natural system it 
is trying to model. But, for those unfamiliar with Dutch 
diminutives, a short introduction on this common structure 
in Dutch language will start of the paper. 

1.1. Dutch diminutives 

A Dutch diminutive is the inflected form of a noun 
(other grammatical categories are possible too, such as 
adjectives, but these will be ignored for the sake of 
brevity), changing the meaning of the uninflected word to 
usually make it smaller, for example ‘tafel’ (table) becomes 
‘tafeltje’ (little table) (for more reading, see Trommelen, 
1983). 

Word count 4587 (excluding abstract, tables, lists, figures, headings, references and appendices) 
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The standard rule for making Dutch diminutives is 
adding the ‘tje’ to the base of a noun. In general there are 5 
known suffixes for the Dutch diminutive form, these are 
‘tje’, ‘je’, ‘pje’, ‘kje’, and ‘etje’.  

The frequency distribution in the CELEX database (Max 
Planck institute, Nijmegen) is shown in table 1, transcribed 
in DISC, a system developed by the same institute, which 
will be used throughout the paper. These results are based 
on 3889 unique diminutive nouns.  

 
 Table 1. Frequency per diminutive form. 
 

tj@ 1879 48.3 
j@ 1452 37.3 
pj@ 102 2.6 
kj@ 76 1.9 
@tj@ 370 9.5 
Exceptions  10 0.2 

 
To give a quick introduction on the known phonological 

rules for diminutive forming, we list the general rules found 
by Daelemans et al. (1997) in their study: 

 
• ‘j@’ is used after an obstruent like ‘pOpj@’. 
• ‘pj@’ is used after a long vowel, diphthong or schwa, 

followed by /m/, like in 'bez@mpj@'. ‘pj@’ is also used 
after a short vowel followed by a liquid (/r/ or /l/) plus 
/m/. 

• ‘@tj@’ is used after a nasal (/m/, /n/ or /N/) or the liquid 
/l/ preceded by a short vowel (as in: ‘romAn-@tj@’, 
‘bAl-@tj@’). This diminutive ending is also added after 
monosyllabic words with a final /r/ that is preceded by a 
short vowel like in (‘bAr’). 

• ‘kj@’ is used in multisyllabic words ending in /IN/ (like 
‘konIN’) if the stress is on the penultimate syllable, like 
in  'sOlderIN-kj@' . The rule is strongly competing with 
the rule for '@tj@', for example in words like ‘lerlIN’ en 
‘twelIN’, which are both ending on ‘@tj@’. 

• ‘tj@’ is the default rule if any of the above is not 
applied. 
 
Some words can have more than one suffix. See 

Daelemans et al. (1997) for a more detailed discussion on 
this on this topic, for this paper only some rules are 
discussed. The general rule for words having two syllables 
is: if they contain a short vowel, and the first syllable is 
stressed, and the second syllable has a nasal or a liquid /l/, 
then the following rules can be applied: 

 
• If a word ends on /n/ or /l/; ‘tj@’ and ‘@tj@’ are both 

possible. 
• If a word ends on /m/; ‘pj@’ and ‘@tj@’ are both 

possible. 
• If a word ends on /N/; ‘kj@’ and ‘@tj@’ are both 

possible. 

For monosyllabic words, the following rules apply for 
multiple diminutive suffixes: 

 
• If a word ends on /p/ /b/ or /G/, ‘@tj@’ and ‘tj@’ are 

both possible. 
• If a word ends in a long vowel followed by a sonorant 

after /m/, ‘tj@’ and ‘@tj@’ are both possible. 

1.2. Dutch diminutive learning by C4.5 

A study by Daelemans et al. (1997) on Dutch 
diminutives applied the C4.5 algorithm. C4.5 is a 
descendant of the program ID3 (Quinlan, 1987). It can 
perform a classification task on attribute-valued objects 
(the data) by supervised learning, which means that the 
categories must have been established beforehand. The 
classes must have been designed in a way that every single 
case can be assigned to only one specific class.  

The C4.5 program generates a decision tree with leaves 
and decision nodes. Every leaf corresponds to a class and a 
decision node specifies some test on a single attribute of an 
object. Every outcome of the test leads to a one branch in 
the sub tree. 

As explained by Quinlan (1987), the learning algorithm 
starts by receiving a collection of attributed objects with an 
pre-assigned class as input. In Daelemans’ case the objects 
were diminutive forms attributed with phonological 
features, and each object was assigned to the correct 
diminutive suffix as its class. With this the algorithm is 
able to construct a decision tree with leaf nodes and 
decision nodes with the provided information. 

The building process and positioning of the nodes in the 
tree is done by calculating the minimal description length 
(Quinlan, 1989), which is done by choosing the best rules 
on the basis of the attributes. The construction of the tree is 
performed by applying a recursive method, which is 
included in appendix A. 

Once the tree is constructed, the readability of the tree 
can be improved by pruning the obtained rules (appendix 
A). The rules are then converted into a readable table where 
the rules are sorted in a logical order. After which the 
algorithm can be tested on new input forms. 

1.3. Dutch diminutive learning by minimal generalization 

Numerous algorithms from machine learning can be 
found in the area of Language Learning. A variety of 
methods on either natural languages or artificial ones, with 
an initial bias or without and on the basis of human 
learning methods or not. The latter of these decisions is not 
an easy one. Human inspired methods benefit from 
plausibility, but it is far from clear how humans learn on 
global or linguistic levels. The previously described C4.5 
method is clearly not the way humans learn a language. It 
requires, for instance, predefined classes, which is an 
unlikely inborn attribute for humans to have. Even if this 
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likelihood is arguable, the enormous overhead requirements 
make the algorithm most unlikely. Storing all possible 
nodes and trying out numerous new nodes on the basis of 
high entropy for each and every new input is unlikely at 
best, not to mention the regular pruning necessary to keep 
the decision-tree efficient. 

There has been a recent addition to the field of learning 
algorithms, inspired by presumed human intuitive and 
stochastic learning. Minimal generalization is an 
implementation based on three human inspired criteria, 
with the goal of mimicking human learning of phonological 
and morphological rules in a natural language (Albright & 
Hayes, 2002). The first criterion is the generation of 
complete output forms. The model should be capable of 
giving a genuine answer as a human would be expected to 
give, and not some abstract classification. Secondly, if 
appropriate, the model should have multiple guesses for an 
answer, such as humans sometimes have more guesses as 
well, and the model should give an indication of how likely 
each answer is. The third criterion is the possibility for a 
model to distinguish detailed variations in language 
patterns. When generalizing rules (this will be explained 
shortly) the model should note small irregularities and learn 
these as well. 

The developers of the minimal generalization learner 
deem these criteria necessary in order to begin mimicking 
the way a human learns generalization rules. The 
advantages above an algorithm such as C4.5 are not just the 
way in which it mimics humans better. For starters, the 
minimal generalization learner (MGL) has a constant 
pruning capacity. Furthermore, the multiple guesses the 
model can make actually keep the model flexible and 
capable of adjusting preferred generalizations whenever 
necessary. A short explanation of how the model works 
will make matters more clear, but for a detailed inquiry into 
its workings, please read Albright & Hayes 2002 or 2003. 

The algorithm starts by receiving pairs of input, a lemma 
and its derived form, both of them encoded in the 
corresponding phonetic form. For each of the phonemes the 
model needs to know what its phonetic or other audible 
features are, the same way a human can hear distinct 
differences between phonemes (presumably). These 
features enable the model to choose which regularities are 
‘audible’ between the pairs, on the basis of which the 
model can then start to form generalizations. Here is an 
example for the Dutch words ‘roos’ and ‘kaas’. 
   

 
 

These rules (1) indicate that the model learned to put ‘je’ 
(in DISC: ‘j@’) behind the word in order to get the correct 
diminutive form.  

This simple step enables the model to learn for each pair 
the minimal change between the lemma and its derivative. 

However, it would be pointless to remember this for all 
input pairs. The model is therefore equipped with further 
generalization capacities (2).  

 
This rule is a generalization of the two earlier mentioned 

word-based rules. This rule will add ‘j@’ after a word 
when it starts with a generic X (any set of phonemes), 
followed by a phoneme that has the minimal shared 
features of ‘o’ and ‘a’ (not all shared features are listed) 
and finally the ‘s’. 

With multiple pairs of input, the model is capable of 
searching for regularities between pairs. It creates a new 
rule that generalizes with a minimum of feature-changes. It 
is therefore called minimum generalization, and this kind of 
rule-forming is the brunt of the model. With each new 
input, it searches whether it fits an already made rule, and if 
not, it adapts the most appropriate rule to encompass this 
new occurrence. But, it does not remove the old rule, and 
this is an important part of the learning algorithm. The new 
rule is not necessarily better, since the new input-form 
could be an exception. All rules need to defend their 
usefulness by remembering their hits, the number of times 
the rule created a correct output form, and their scope, the 
number of times the rule was applicable. These hits and 
scope are used to calculate reliability (hits/scope) and 
confidence (an adjusted reliability, taking absolute score 
into account, so that for instance 98% correct guesses for a 
scope of 500 gets a higher confidence then 100% correct 
for a scope of 2, see Mikheev, 1997). With this reliability, 
all applicable rules compete to generate output. 

The model is now capable of constantly generating 
generalizations on the basis of phonetic features, trying to 
maximize correct generalizations by penalizing rules which 
either generate incorrect output forms or do not generate 
output at all. 

One of the elegant behaviors of this model is its 
indiscriminate attitude towards regular and irregular forms. 
The model quite simply does not care and will generate 
generalizations wherever it can. Regular forms will 
naturally lead to rules with larger scope, but irregular forms 
still have large similarities and in their most exceptional 
case will still lead to a rule with a scope of one. Albright 
and Hayes claim that humans learn in a similar fashion, not 
fundamentally discriminating between regular and irregular 
forms in the way they are learned. 

The strong claim is that the MGL is capable of learning 
as humans do, intuitively and stochastically. This, in 
contrast to C4.5, is why it has become the model of choice 
for application on Dutch diminutive learning. The model 

(1) 

(2) 
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will receive Dutch word pairs of matching lemma and 
diminutive form, and hopefully learn to form the correct 
generalizations, whether of regular or irregular form. 

2. Hypothesis 

The C4.5 learner used by Daelemans et al. (1997) is 
making use of a priori knowledge about the domain of the 
language learning problem to apply the proper rule to the 
encountered examples. In the case of Daelemans’s study 
the five grammatical Dutch diminutive categories were 
coded beforehand. In contrast the minimal generalization 
learner used by Albright and Hayes (2002) can perform a 
learning task without any domain specific categorical 
knowledge. With the minimal generalization learner it is 
possible to test the hypothesis that grammatical forms can 
be learned without prior knowledge of the formal rules of 
language.  

To test the hypothesis, the outcomes of the minimal 
generalization learner can be compared with the results 
from the C4.5 learner and the behavioral data. If a 
correlation with the behavioral data can be found, the 
learner would seem to behave humanlike in applying 
language rules. We expect that the MGL provides an equal 
rate of correct answers as the C4.5 which will indicate that 
the previous introduction of the grammatical classes is not 
needed for the production of the right answer.  

3. Behavioral study  

In order to be able to validate the predictions of the 
model, the same testing conditions were used for the MGL 
and proficient Dutch speakers. For this test a number of 
wug-words were formulated in a way that every diminutive 
form in the Dutch language can be applied at least to some 
of the wug-words. Wug-words are invented words that do 
not exist in the natural language, but that follow the 
phonetic rules of the language. With these words we could 
test which diminutive form participants would prefer. Also, 
we wanted to obtain a coefficient of confidence for every 
possible output form in order to compare the sequence of 
most confident to less confident with the one produced by 
the Minimal Generalization Learner.  

3.1. Method 

Wug-words were created using a program which on the 
basis of the CELEX corpora and the phonotactic rules of 
the language creates strings of readable letters that are not 
actual words (for details on the program, see Duyck et al., 
2004). A total of 128 wug-words were created with 3, 5 and 
6 letters. From them 34 were selected for the study (see 
table 2 for a list) on the basis of similarity to real Dutch 
words, while making sure every diminutive ending had 

certain candidates. The questionnaire consisted of 170 
questions corresponding to al five possible forms of each 
wug-word. Participants were required to give their 
confidence rating (How well does this form sounds to 
you?) on a scale from 1 to 7. The questionnaire was 
uploaded on the web and participants responded on-line. 
(for an example of the questionnaire see Appendix B) 

3.2. Participants 

29 students from the University of Groningen 
participated in the study.  

3.3. Results and Discussion 

The ratings were analyzed in term of the discriminability 
between the diminutive forms. For each wug-word a five 
level ANOVA was computed (nonparametric Kruscal-
Wallis test for the words that did not cover the assumption 
of equality of variances) comparing the mean ratings for 
each of the five forms.  (See table 2) 

The results showed that people do discriminate between 
the various diminutive forms for most of the wug-words, 
although for some of the words it is not possible to identify 
a single diminutive form that is preferred by the 
participants. The last fact can be explained by the nature of 
the questionnaire that was used. For each option only the 
graphical transcription was presented without the stress. 
The stress assumed by different participants can be 
different, which could lead to different choices (see 5.2.). 

4. The Minimal Generalization Learner 

In this section the implementation of MGL will be 
briefly explained, and tested on CELEX-data and the wug-
words used in the behavioral test. The results will 
eventually be discussed and a short comparison with the 
results of C4.5 will follow. 

4.1. Method 

The minimal generalization learner is this paper’s model 
of choice for the diminutive learning problem. Its 
application is made possible by using Albright and Hayes’ 
own Java code, generously supplied by the authors 
themselves. This MGL-program is capable of using a file as 
its input-source, and another file for determining which 
feature each phoneme has. The contents of the feature-
translation file and a small part of the input-file are seen in 
Appendix C. 

 
 
 



 5Table 2. A list of all 34 wug-words and the behavioral survey results. The right column shows the order of 
preference, where a comma indicates a non-significant difference and a ‘>’ indicates a significant preference. 

  
Wug-word  Ordering of the diminutive forms 

Ambing (F(4,165) =100.48; p =0.000) Ambingkje, Ambingetje > Ambingtje, Ambingje, Ambingpje 

Belui (X^2(4) = 87.45; p =0.000) Beluitje, Beluikje, Beluipje, Beluietje, Beluije 

Benre (F(4,165) =16.07; p =0.000) Benretje > Benreetje, Benrekje, Benrepje > Benreje 

Bexeid (X^2(4) = 91.2; p =0.000) Bexeidje, Bexeidetje, Bexeidtje, Bexeidkje, Bexeidpje 

Bulkan (X^2(4) =82.18; p =0.000) Bulkanetje, Bulkantje, Bulkanje, Bulkankje, Bulkanpje 

Deron (F(4,165) =47.18; p =0.000) Deronetje, Derontje > Deronkje > Deronje, Deronpje 

Dofman (X^2(4) =88.68; p =0.000) Dofmanetje, Dofmantje, Dofmankje, Dofmanje, Dofmanpje 

Egkel (F(4,165) =23.82; p =0.000) Egkeltje > Egkeletje, Egkelpje, Egkelkje > Egkelje 

Etken (F(4,165) =41.41; p =0.000) Etkentje, Etkenetje > Etkenkje, Etkenpje, Etkenje 

Euk (X^2(4) =93.77; p =0.000) Eukje, Euketje, Euktje, Eukkje, Eukpje 

Fuk (X^2(4) =98.33; p =0.000) Fukje, Fuketje, Fuktje, Fukkje, Fukpje 

Gug (X^2(4) = 90.45; p =0.000) Gugetje, Gugje, Gugtje, Gugpje, Gugkje 

Hir (F(4,165) =13.53; p =0.000) Hirtje, Hiretje, Hirkje, Hirpje > Hirje 

Jub (F(4,165) = 48.78; p =0.000) Jubetje, Jubje > Jubtje, Jubkje, Jubpje 

Kaptel (F(4,165) = 39.47; p =0.000) Kapteletje > Kapteltje > Kaptelkje, Kaptelpje, Kaptelje 

Knagem (F(4,165) = 40.94; p =0.000) Knagempje > Knagemetje, Knagemkje, Knagemtje, Knagemje 

Kolel  (F(4,165) = 27.28; p =0.000) Koleletje, Koleltje > Kolelkje, Kolelpje, Kolelje 

Kulia (X^2(4) = 96.18; p =0.000) Kuliatje, Kuliakje, Kuliapje, Kuliaje, Kuliaetje 

Matia (X^2(4) = 83.76; p =0.000) Matiatje, Matiapje, Matiakje, Matiaje, Matiaetje 

Nalten (F(4,165) = 28.07; p =0.000) Naltentje, Naltenetje > Naltenkje > Naltenpje, Naltenje 

Pakden (F(4,165) = 71.45; p =0.000) Pakdenetje, Pakdentje > Pakdenkje > Pakdenje, Pakdenpje 

Paping (F(4,165) = 61.22; p =0.000) Papingkje, Papingetje > Papingtje, Papingje, Papingpje 

Pinnem (F(4,165) = 20.33; p =0.000) Pinnempje > Pinnemetje, Pinnemtje, Pinnemkje, Pinnemje 

Qum (X^2(4) =97.22; p =0.000) Qumetje, Qumpje, Qumtje, Qumkje, Qumje 

Redek (X^2(4) =103.92; p =0.000) Redekje, Redeketje, Redektje, Redekkje, Redekpje 

Rewin (F(4,165) =34.45; p =0.000) Rewintje, Rewinetje > Rewinkje > Rewinje, Rewinpje 

Sfart (F(4,165) =57.24; p =0.000) Sfartje > Sfartetje > Sfarttje, Sfartkje, Sfartpje 

Sleub (F(4,165) =33.23; p =0.000) Sleubje > Sleubetje > Sleubtje, Sleubkje, Sleubpje 

Ult (X^2(4) =83.56; p =0.000) Ultje, Ultetje, Ulttje, Ultkje, Ultpje 

Urs (F(4,165) =17.96; p =0.000) Ursje > Ursetje, Urstje, Urskje, Urspje 

Vrote (X^2(4) =51.78; p =0.000) Vrotetje, Vroteetje, Vrotekje, Vrotepje, Vroteje 

Wur (F(4,165) =28.2; p =0.000) Wurtje, Wuretje, Wurkje, Wurpje > Wurje 

Xezen (X^2(4) =64.25; p = 0.000) Xezentje, Xezenetje, Xezenkje, Xezenpje, Xezenje 

4.2. Testing the MGL with CELEX-data 

As already explained in a previous chapter, the MGL 
learns by using input pairs, in this case CELEX lemma-
diminutive pairs. The program then uses the feature-file to 
derive phonetic regularities and derive the generalization 
rules. In addition, the MGL is capable of receiving bare 
input, the lemma form only, and giving all possible outputs 
with their confidences. To test the intrinsic learning 
capacity of the model, before comparing it with the 
behavioral data, we performed a ten-fold cross-validation. 

We randomly divided the entire CELEX-corpus into ten 
parts. Each part was then tested with the remaining 9 parts 
for learning, resetting the learned rules every time. This 
resulted in testing 3869 Dutch diminutive forms from the  
CELEX-corpus, deriving for each lemma all possible 
output-forms and their confidence and reliability ratings. 
To derive an overall score of the MGL’s performance, the 
output forms with maximum confidence and reliability 
were compared with the correct form as contained within 
the CELEX-corpus. 

To compare the MGL’s performance with human 
behavior, the wug-words presented to the human subjects 
were also tested. This time, the entire CELEX-corpus was 
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used as training-data, after which the wug-words were 
presented. All wug-word-inputs generated one or more 
output forms with their respective reliability and 
confidence ratings. A comparison with the behavioral data 
can be seen in the results-section.  

4.2.1. Introduction on CELEX 
CELEX was founded in Nijmegen in 1986 under 

supervision of several Dutch-based research centers, most 
notably the Max Planck institute in Nijmegen. The project 
came to an end in 2001. The data is still available on 
CDROM and through a web interface. The database 
contains orthographic, phonological, morphological, 
syntactic and frequency properties of Dutch, English and 
German lemmas.  For the Dutch language the database 
contained (in 1990), 381.292 Dutch word-forms, 
corresponding to 124.136 lemmas.  

4.2.2. Obtaining the diminutive forms from CELEX 
For this experiment we used the web based CELEX 

database. We abstracted 3869 Dutch Diminutive forms 
from it.  

 
 Table 3. Example input training data for the MGL 
 

DISC DISC + Dim. Freq. Stem Stem + Dim. 

mAGa'zKn mAGa'zKntj@ 1 magazijn magazijntje 

'zerKs 'zerKsj@ 4 zeereis zeereisje 

At@l'je At@l'jetj@ 2 atelier ateliertje  

wev@'rK wev@'rKtj@ 1 weverij weverijtje 

 
The data in table 3 is used as training input for the 

minimal generalization learner. The first column is the stem 
in the phonological DISC notation. The second column is 
the Dutch diminutive form in DISC notation. The third 
column is the frequency of the word form in the corpus 
from which the CELEX database is abstracted.   The last 
two columns are the words in normal Dutch notation and 
primarily used as annotation of the data.  

4.2.3. Results of MGL tested on CELEX 
As mentioned the MGL was tested, in ten parts, with all 

available and appropriate input-forms from CELEX. 
 

Table 4. Example output for ‘magazijn’. 
 

Input Output Dim. Scope Hits Rel. Conf. 

mAGa'zKn mAGa'zKnj@ j@ 3038 1250 0.411 0.291 

mAGa'zKn mAGa'zKntj@ tj@ 81 81 1.0 0.988 

mAGa'zKn mAGa'zKn@tj@ @tj@ 308 95 0.308 0.220 

 
 The results thus consisted of one or multiple outputs per 

test-form, an example is shown in table 4. The first column 
is the stem in the phonological DISC notation. The second 

column is the word with the learned suffix. The third 
column is the derived suffix. The fourth column is the 
scope. The fifth column contains the number of hits and the 
last two column contain reliability and confidence.  

In the example above there are three possible guesses by 
the learner. For calculating the accuracy of the learner the 
case with the best reliability and best confidence is taken. 
For each item in the 3869 test items an output is obtained 
and compared with the CELEX data. 

The results in total and per diminutive form are shown 
in table 5. 

4.3. Comparative results of MGL with C4.5 

The result obtained from the MGL were compared to 
those of Daelemans. This is shown in table 5, which shows 
the results obtained by choosing the MGL’s top answers, 
either by confidence or by reliability, and the C4.5 results. 
Both the total results of all CELEX-input forms are shown, 
and per diminutive ending. 

 
 Table 5. Results of the MGL and C4.5. 

 
Suffix MGL-Confidence 

(% correct) 

MGL-Reliability 

(% correct) 

C4.5 

(% correct) 

Total: 96.1 96.3 97.4 

j@ 96.4 96.9 99.2 

tj@ 99.2 99.1 99.3 

kj@ 98.7 82.9 90.0 

pj@ 99.0 99.0 90.0 

@tj@ 78.1 81.9 84.0 

 
The minimal generalization learner scores on 3869 items 

better when the best results of the minimal generalization 
learner are picked on reliability with a total score of 96.6  
percent then on confidence with a total score of 96.4 
percent. Daelemans mentions a total score of 97 percent on 
3950 words. The confidence scores are the best on the 
suffix ‘kj@’. With 76 occurrences in the CELEX database 
the ‘kj@’ is the rarest suffix, which indicates that the 
Minimal Generalization Learner scores good on 
irregularities. The rare ‘pj@’ with 102 counts in the 
database scores better than the 90 percent outcome from the 
C4.5 learner on that suffix, but the ‘@tj@’ with 370 items 
in the database scores slightly better with the C4.5 learner. 
In overall the C4.5 learner has a better success on the most 
items where the Minimal Generalization Learner scores 
best on the suffixes with inferior frequency in the database.       

4.4. Comparative results of MGL with behavioral data 

A regression analysis was performed in order to access 
the correlation between the Mean Behavioral Ratings and 
the Confidence Ratings produced by the MGL for each 
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Figure 1. Linear regression between the mean behavior ratings for 91 
wug-words from the questionnaire and the corresponding confidence 
ratings produced by the MGL. R^2=0.418 (β=0.64; t=8.00; p=0.00). 

Wug-word diminutive form. Some of the diminutive forms 
were excluded from the analysis because the MGL 
algorithm did not produce a confidence rating for them. 
The forms that did not produce a rating trough the MGL 
were excluded from the analysis and the analysis was made 
for the remaining 91 forms. The obtained Pearson 
Correlation is 0.647 (p=0.000) and the R^2 corresponding 
to the regression line is 0.418 (figure 1). This indicates that 
an increase in the participants’ mean survey ratings 
correspond to an increase of the confidence ratings of the 
MGL. 

5. Discussion 

5.1. Comparative analysis  

The main aim of the study was to discover whether the 
MGL was able to mimic human learning behavior in the 
case of Dutch diminutive forming, and as a special case 
performs as well as the C4.5 model without its need for a 
priori categorical knowledge. 

To test whether the MGL model was capable of learning 
the problem at all, a ten-fold cross validation with all 3869 
input items was used. This resulted in a score of about 96% 
of correct predictions (96.1 for the confidence and 96.3 for 
the reliability ratings), which indicates that the model is 
suitable for the chosen problem.  

Furthermore, it was argued that because no a priori 
knowledge about categories was necessary to learn the 
Dutch diminutive forming, the MGL model would perform 
at least as well as the C4.5 model. This is confirmed by the 
results, which show no real differences in performance 

between the models. The MGL is slightly outperformed 
when all inputs are considered. C4.5, however, has 
problems with the more exceptional cases of ‘pj@’ and 
‘kj@’, where the MGL does not. This is likely due to the 
MGL’s capability of dealing with irregular forms, thanks to 
its sensitiveness to less common generalizations, and the 
rigidness of C4.5 caused by the a priori introduction of the 
categories. What is most important, is the fact that MGL 
certainly does not perform worse than C4.5, indicating that 
knowledge about categories is not an essential prerequisite 
for learning the rules of forming Dutch diminutives. 

The model was able to generate multiple answers for 
each wug-word, enabling comparison with participants 
asked to rate each diminutive ending per wug-word. There 
is a strong positive correlation between the answers given 
by the MGL and the participants. This indicates that the 
model seems to correctly mimic human behavior for 
previously unknown words. Humans do not give just one 
answer per novel word, but they give several of them with 
different confidence ratings on each of them. The model 
does something very similar, and therefore we might argue 
that the model captures the intuitive approach the 
participants use when they encountered words that do not 
exist.  

5.2. Problems 

Some limitations of the study can be pointed out. First of 
all, concerning the questionnaire, the wug-words and 
corresponding forms were presented in a written format 
without any stress added. As was already mentioned above, 
different participants can assume different stress for the 
same wug-word (or even the same participants can use 
different criteria per diminutive form of the same wug-
word). The result is that for some of the wug-words no 
single most confident form can be identified.  

Another point that is worth mentioning is that the MGL 
did not gave a rating for each possible diminutive form of 
each wug-word, as participants in the questionnaire did. 
Participants were implicitly forced (there was no non-
answer option) to give a rating for each form, and it is not 
known if they would produce all of them if asked in an 
open ended question.  

Concerning the diminutive forms found in CELEX, 
there appear to be a few irregular forms outside the 
common rule of adding one of the five suffixes. The most 
striking exception is entirely new suffix, namely ‘k@’, 
such as in ‘mAn’ → ‘mAn@k@’, but it is highly 
uncommon. Furthermore, phonetic changes of the lemma 
occur, like in ‘sxIp’ →  ‘sxepj@’, or even a deletion of the 
/n/ at the end of a lemma, like ‘jON@n’ → ‘jON@tj@’. 
The MGL deals with these irregulars by learning rules that 
add the new suffix, in these cases '@k@' and 'epj@'. In the 
case of 'jON@tj@' the learner will add a 'tj@' instead of 
'@tj@' to the lemma. In total only 10 cases of irregulars 
were found in the CELEX data. The irregulars do have a 
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small influence on the learner, by adding guesses of 
irregular suffix for many of the input-forms, but the 
confidence for such outputs is always very low due to a 
very low hit/scope ratio. Furthermore, we did not notice 
any effects on the wug-words test. 

Finally, the regression analysis showed that only about 
40% of the variability of the data obtained from the 
questionnaire can be explained by the confidence ratings of 
the MGL. Several explanations for this effect can be 
pointed out. First of all, as can be seen in figure 1, the MGL 
confidence ratings have a discrete distribution in the lowest 
levels and the behavioral data does not. This fact can be 
due to the calculation of the reliability rating by the MGL 
and the formation of “islands of reliability” (Albright & 
Hayes, 2003) that are very narrow (rules that can be applied 
in only a few cases, but with high confidence) and in such a 
way produce the same coefficient in a multitude of cases.  

 

5.3. Improvements and further research 

First of all, the behavioral data should be collected in a 
way that reflects the exact characteristics of the input used 
for the MGL by including the stress in the wug-words.  

The model can be tested with different amounts of input 
in order to check how much is needed for the learning of 
each rule.  

Greater exposure to natural input could be generated by 
making use of the flexible nature of Dutch diminutive 
forms, which are not only applicable to nouns (current 
model), but to names, adjectives (making it a noun) and 
adverbs as well. Increasing the training-set, especially for 
the irregular forms, could increase the model’s learning 
capacity further. 

To test further intuitive notions of human learning, the 
test data could be extended to non-Dutch words. Similar to 
wug-words, both human and MGL results can be compared 
to test the model’s mimicking capacity for human intuitive 
behavior to novel input. 
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Appendix A.  

Rules of C4.5 for constructing nodes, and pruning. 
- T is the set of training examples.  
- A class is one of the possible outcome-categories. 
- Features are the attributes of the input (such as 
phonetic features for language input). 
 
Make-Decision-Tree ( T ) : 
 

• If T contains cases belonging to class Cj, then the 
decision Tree for T is a leaf identifying class Cj. 

• If T contains no cases. T is then a leaf. The overall 
majority class in the parent nodes of T is chosen as the 
identifying class for T. 

• If T contains cases that belong to a mixture of classes. 
Then tests are constructed on single features.  A test 
results in several subsets from the examples in T. The 
test with the highest Information Gain (based on 
entropy) will be used to construct the decision node for 
T. All constructed subsets will be input for Make-
Decision-Tree (T). 
 
Pruning ( T ) : 
 

• Convert the paths from root to leaf node into rules. 
Example: If (Atr1 = X) and (Atr2 =Y), then outcome 
Category-1. 

• Remove preconditions, if this would result in improving 
the estimated accuracy. 

• Sort the rules per single class into subsets of rules. 
• Sort the subsets on number of training cases covered by 

the subset. 
• Sort the rules in the subsets based on their estimated 

accuracy (by calculating the Minimum Description 
Length over rules per class). 

• Create a default rule, for the case none of the rules can 
be applied on the input. 
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Appendix B.  

Below is shown the web-survey used for the behavioral 
study. The Dutch instruction reads, in short: “We are 
conducting a study in language acquisition of children, with 
the help of a computermodel. The following questions will 
be about wug-words, non-existing words, and we would 
like you to rate each possible form on a scale of 1 (not 
natural) till 7 (very natural). These answers will be 
compared to those of the model.” 
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Appendix C.  

Feature file used for determining which feature each 
type of DISC phoneme has. 
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41 ) 1 -1 1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
42 * 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0
64 @ 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
95 _ -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1

124 | 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0
125 } 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0
60 < 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0
65 A 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
97 a 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
98 b -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 0

100 d -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1
101 e 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
69 E 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0

102 f -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 0
71 G 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0

103 g -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
104 h -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0
105 i 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
73 I 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0

106 j -1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0
107 k -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
75 K 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 0

108 l -1 -1 -1 1 1 1 0 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1
76 L 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0

109 m -1 -1 -1 1 1 -1 0 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 0
77 M 1 -1 -1 -1 1 1 0 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 0

 


