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Abstract
We propose a method for automatically iden-
tifying rhetorical relations. We use supervised
machine learning but exploit cue phrases to au-
tomatically extract and label training data. Our
models draw on a variety of linguistic cues to
distinguish between the relations. We show that
these feature-rich models outperform the previ-
ously suggested bigram models by more than
20%, at least for small training sets. Our ap-
proach is therefore better suited to deal with
relations for which it is difficult to automati-
cally label a lot of training data because they
are rarely signalled by unambiguous cue phrases
(e.g., continuation).

1 Introduction

Clauses in a text relate to each other via rhetori-
cal relations such as contrast, explanation or
result (see, e.g., (Mann & Thompson 87)). For
example, (1b) relates to (1a) with result:

(1) a. A train hit a car on a level crossing.
b. It derailed.

Many NLP applications would benefit from a
method which automatically identifies such rela-
tions. Question-answering and information ex-
traction systems, for instance, could use them to
answer complex queries about the cause or result
of an event. Rhetorical relations have also been
shown to be useful for automatic text summari-
sation (Marcu 98).

While rhetorical relations are sometimes sig-
nalled by cue phrases (also known as discourse
connectives) such as but, since or consequently,
these are often ambiguous. For example, since
can indicate either a temporal or an explanation
relation (examples (2a) and (2b), respectively).
Furthermore, cue phrases are often missing (as in
(1) above). Hence, it is not possible to rely on cue
phrases alone.

(2) a. She has worked in retail since she moved
to Britain.

b. I don’t believe he’s here since his car isn’t
parked outside.

In this paper, we present a machine learning
method which uses a variety of (relatively shal-
low) linguistic and textual features, such as word
stems, part-of-speech tags or tense information,
to determine the rhetorical relation between two
adjacent text spans (sentences or clauses) in the
absence of a cue phrase. We employ a super-
vised machine learning technique based on deci-
sion trees and boosting (Schapire & Singer 00).
However, to avoid manual annotation of large
amounts of training data, we train on automat-
ically labelled examples, building on earlier work
by (Marcu & Echihabi 02), who extracted exam-
ples from large text corpora and used cue phrases
to label them with the correct rhetorical relation.
The cue phrases were then removed before the
classifiers were trained.

This approach works because there is often a
certain amount of redundancy between the cue
phrase and the general linguistic context. For
example, the two clauses in example (3a) are in
a contrast relation signalled by but. However,
this relation can also be inferred if no cue phrase
is present (see (3b)).

(3) a. She doesn’t make bookings but she fills
notebooks with itinerary recommenda-
tions.

b. She doesn’t make bookings; she fills note-
books with itinerary recommendations.

(Hobbs et al. 93) and (Asher & Lascarides 03)
propose a logical approach to inferring relations,
which in this case would rely on the linguistic cues
of a negation in the first span, syntactic paral-
lelism of the two spans, and the fact that they
both have the same subject. We intend to explore
whether such cues can also be exploited as fea-
tures in a statistical model for recognising rhetor-
ical relations.

Thus, the main difference between our research
and the earlier work by (Marcu & Echihabi 02)
is that their models rely on word co-occurrence



statistics alone while we use a variety of linguistic
features, similar to those used by (Lapata & Las-
carides 04) and inspired by symbolic approaches
to the task (Hobbs et al. 93; Corston-Oliver 98).
We also use a different set of relations.

2 Related Research

(Marcu & Echihabi 02) present a machine
learning approach to automatically identify
four rhetorical relations (contrast, cause-
explanation-evidence, condition and elab-
oration) from the inventory of relations de-
scribed in (Mann & Thompson 87). Two types
of non-relations (no-relation-same-text, no-
relation-different-texts) are also included.
The training data are extracted automatically
from a large text corpus (around 40 million sen-
tences) using manually constructed extraction
patterns containing cue phrases which typically
signal one of these relations. For example, if a
sentence begins with the word but, it is extracted
together with the immediately preceding sentence
and labelled with the relation contrast. Ex-
amples of non-relations are created artificially by
selecting non-adjacent text spans (from the same
or different texts). Because the text spans are
non-adjacent and randomly selected, it is rela-
tively unlikely that a relation holds between them.
Using this method, the authors obtain between
900,000 and 4 million examples per relation.

The cue phrases were then removed from the
extracted data and a set of Naive Bayes classifiers
was trained to distinguish between relations on
the basis of co-occurrences between pairs of lexical
items. (Marcu & Echihabi 02) report a test set
accuracy of 49.7% for the six-way classifier.

(Lapata & Lascarides 04) present a method for
inferring temporal connectives. They, too, ex-
tract training data automatically, using connec-
tives such as while or since. But their task differs
from ours and Marcu and Echihabi’s, in that they
aim to predict the original temporal connective
(which was removed from the test set) rather than
the underlying rhetorical relation. They thus
tackle connectives which are ambiguous with re-
spect to the rhetorical relations they signal, such
as since, and they do not address how to disam-
biguate them. To achieve their task, they train
simple probabilistic models based on nine types
of linguistically motivated features. They report
accuracies of up to 70.7%.

There have also been a variety of non-statistical
approaches to the problem. (Corston-Oliver 98),
for instance, presents a system which takes fully
syntactically analysed sentences as input and de-
termines rhetorical relations by applying heuris-
tics which take a variety of linguistic cues into
account, such as clausal status, anaphora and
deixis. (Le Thanh et al. 04) use heuristics based
on syntactic properties and cue phrases to split
sentences into discourse spans and to determine
which intra-sentential spans should be related. In
a second step, they then combine several cues,
such as syntactic properties, cue words and se-
mantic information (e.g. synonyms) to determine
which relations hold between these spans. Finally,
they derive a discourse structure for the complete
text by incrementally combining sub-trees into
larger textual units.

3 Our Approach

3.1 Relations and Cue Phrase Selection

We chose a subset of rhetorical relations from
sdrt’s inventory (Asher & Lascarides 03),
namely: contrast, result, explanation,
summary and continuation. These relations
were selected on the basis that for each of them,
there are unambiguous cue phrases but these rela-
tions also frequently occur without a cue phrase;
so it is beneficial to be able to determine them au-
tomatically if no cue phrase is present. This is in
marked contrast to relations such as condition,
which always require a cue phrase (e.g., if. . . then
or suppose that . . . ).

sdrt relations are defined purely on the basis
of truth conditional semantics and therefore tend
to be less fine-grained than those used in Rhetor-
ical Structure Theory (rst) (Mann & Thompson
87) (see below). Let R(a, b) denote the fact that a
relation R connects two spans a and b. For each
of the five relations it holds that R(a, b) is true
only if the the contents of a and b are true too. In
addition, contrast(a,b) entails that a and b have
parallel syntactic structures that induce contrast-
ing themes, result(a,b) entails that a causes b,
summary(a,b) entails that a and b are semanti-
cally equivalent, continuation(a,b) means that
a and b have a contingent, common topic and ex-
planation(a,b) means that b is an answer to the
question why a? (cf. (Bromberger 62)).

To identify mappings from cue phrases to the
sdrt relations they signal, and in particular to



identify unambiguous cue phrases, we undertook
an extensive corpus study, using 30 randomly se-
lected examples for each cue phrase (i.e., around
2,000 examples in all), as well as linguistic intro-
spection given sdrt’s dynamic semantic interpre-
tation. The differences between sdrt and rst
mean that some cue phrases which are ambigu-
ous in rst are unambiguous in sdrt. For exam-
ple, in other words can signal either summary
or restatement in rst, but sdrt does not not
distinguish these relations since the length of the
related spans is irrelevant to sdrt’s semantics.
Similarly, sdrt does not distinguish explana-
tion and evidence, and therefore, while because
is ambiguous in rst, it is unambiguous in sdrt,
signalling only explanation. sdrt also does not
distinguish contrast, antithesis and conces-
sion, making but unambiguous.

Sentences (4) to (8) below show one automat-
ically extracted example for each relation (cue
phrases which were used for the extraction and
removed before training are underlined, and the
two spans are indicated by square brackets).

(4) [We can’t win] [but we must keep trying.]
(contrast)

(5) [The ability to operate at these temperatures
is advantageous,] [because the devices need
less thermal insulation.]
(explanation)

(6) [By the early eighteenth century in Scotland,
the bulk of crops were housed in ricks,] [the
barns were consequently small.]
(result)

(7) [The starfish is an ancient inhabitant of trop-
ical oceans.] [In other words, the reef grew up
in the presence of the starfish.]
(summary)

(8) [First, only a handful of people have spent
more than a few weeks in space.] [Secondly, it
has been impractical or impossible to gather
data beyond some blood and tissue samples.]
(continuation)

3.2 Data

We used three corpora, mainly from the news
domain, to extract our data set: the British
National Corpus (BNC, 100 million words), the
North American News Text Corpus (350 million
words) and the English Gigaword Corpus (1.7 mil-
lion words). We took care to remove duplicate
texts. Since we were mainly interested in written

texts, we also excluded all BNC files which are
transcripts of speech.

Most of our corpora were not annotated with
sentence boundaries, so we used a publicly avail-
able sentence splitter (Reynar & Ratnaparkhi 97),
which was pre-trained on news texts, to automat-
ically insert sentence boundaries.

The extraction happened in two steps. First,
we processed the raw text corpora to extract po-
tential training examples using manually written
extraction patterns based on 55 (relatively un-
ambiguous) cue phrases. All extracted examples
were then parsed with the RASP parser (Carroll
& Briscoe 02) and the parse trees were processed
to (i) identify the two spans using simple heuris-
tics (based on clause boundaries and the position
of the cue phrases) and (ii) filter out any false
positives that could not be filtered out using the
raw texts alone.

An example of the latter is sentence (9), which
was extracted as an example of a summary re-
lation based on the apparent presence of the cue
phrase in short. However, the parser correctly
identified this string as part of the prepositional
phrase in short order and the example was dis-
carded. Examples which could not be parsed (or
only partially parsed) were also discarded at this
stage. For each of the extracted training exam-
ples, we also kept track of its position in the para-
graph as we used this information in one of our
features.

(9) In short order I was to fly with ‘Deemy’ on
Friday morning.

Using this two step extraction method we were
able to extract both intra- and inter-sentential re-
lations (see (4) and (7) above, respectively). How-
ever, we limited the length of the extracted spans
to one sentence as we specifically wanted to focus
on relations between small units of text.

There are three potential sources of noise in
the extraction process: (i) the two spans are not
related, (ii) they are related but the wrong re-
lation is hypothesised and (iii) the hypothesised
span boundaries are wrong. The latter applies
particularly to summary and result, where ei-
ther span can contain more than one sentence.
In this case we would only extract the first (or
last) sentence of the span. However, this will not
cause any harm provided the partially extracted
span already contains enough cues for our model
to correctly learn the relation.



In our extraction method we went for high pre-
cision at the expense of recall. A small-scale
evaluation using 100 randomly selected, hand-
corrected examples (20 per relation) revealed 11
extraction errors overall. In no case was the
wrong relation predicted. Three errors were due
to hypothesising a relation where there was none.
The remaining 8 errors were wrong boundary pre-
dictions (partly due to our “one sentence per
span” limit, partly due to sentence-splitting er-
rors). Hence we achieved an overall precision of
89% (97% if the less important boundary errors
are excluded).

The number of training examples we could ex-
tract automatically differed for every relation:
for continuation we obtained less than 2,000
examples whereas for the most frequently ex-
tracted relation, contrast, we obtained around
50,000 examples. On the whole, our data
set is much smaller than the one used by
(Marcu & Echihabi 02), which contained around
10 million examples for six relations. Our task
is thus more challenging in the sense that we are
classifying rhetorical relations on the basis of a
smaller training set.

3.3 Machine Learning

We used BoosTexter (Schapire & Singer 00) as
our machine learning system. BoosTexter was
originally developed for text categorisation. It
combines a boosting algorithm with simple de-
cision rules and allows a variety of feature types,
such as nominal, numerical or text-based features.
For the latter, BoosTexter applies n-gram models
when forming classification hypotheses. We used
BoosTexter’s default settings in all experiments
discussed below.

3.4 Features

We implemented a variety of linguistically moti-
vated features (72 in total), roughly falling into 9
classes: positional features, length features, lex-
ical features, part-of-speech features, temporal
features, syntactic features and cohesion features.

Positional Features We defined three posi-
tional features. The first encodes whether the re-
lation holds intra- or inter-sententially. The sec-
ond and third encode whether the example oc-
curs towards the beginning or end of a paragraph.
The motivation for these features is that the like-
lihood of different relations varies with both their

paragraph position and the position of sentence
boundaries relative to span boundaries. For in-
stance, contrast is more likely to hold between
two clauses within a sentence than continua-
tion. And a summary relation is probably more
frequent at the beginning or end of a paragraph
than in the middle of it.

Length Features Information about the
length of the spans might be equally useful. For
example, it is possible that the average span
length for continuation is longer than for
contrast.

Lexical Features Lexical information is also
likely to provide useful cues for identifying the
correct relation (cf. (Marcu & Echihabi 02)). For
example, word overlap may be evidence for a sum-
mary relation. Furthermore, while we do not use
cue phrases as our model features (as they provide
the basis on which the data is labelled), there may
be words not in our cue phrase inventory which
hint at the presence of a particular relation. For
instance, still often occurs in contrasts.

We incorporated a variety of lexical features.
For each of the spans, we included the string of
lemmas and stems of all words as a text-based
feature. We also separately included the lem-
mas of all content words. Encoding lexical items
as text-based features allows BoosTexter to au-
tomatically identify n-grams that may be good
cues for a particular relation. Note that BoosT-
exter will only consider n-grams that form a con-
tinuous string. Hence bigrams in BoosTexter are
different from the (non-adjacent) word-pairs used
in (Marcu & Echihabi 02).

As a further feature, we calculated the overlap
between the spans, i.e., what proportion of stems,
lemmas, and content-word lemmas occurs in both,
and added this as a numerical feature.

Part-of-Speech Features We encoded the
string of part-of-speech tags for both spans as
a text-based feature as it is possible that cer-
tain part-of-speech tags (e.g., certain pronouns)
are more likely for some relations than for others.
Following (Lapata & Lascarides 04), we also en-
coded specific information about the verbs, nouns
and adjectives in the spans. In particular, we in-
cluded the string of verb (noun, adjective) lem-
mas contained in each span as text-based features.
For instance, the strings of verb lemmas in exam-
ple (5), repeated as (10) below, are “operate be”



(left span) and “need” (right span).

(10) The ability to operate at these temperatures
is advantageous because the devices need less
thermal insulation.

We also mapped the lemmas to their most
general WordNet (Fellbaum 98) class (e.g., verb-
of-cognition or verb-of-change for verbs, event
or substance for nouns etc.). Ambiguous lem-
mas which belong to more than one class, were
mapped to the class of their most frequent sense.
If a lemma was not in WordNet, the lemma itself
was used. Finally, we also calculated the overlaps
between lemmas and between WordNet classes for
each part-of-speech class and included these as
numerical features.

Temporal Features Tense and aspect provide
clues about temporal relations among events and
may also influence the probabilities of different
rhetorical relations. We therefore included tem-
poral features in the model. To do so, we first ex-
tracted all verbal complexes from the parse trees
and then used simple heuristics to classify each
of them in terms of finiteness, modality, aspect,
voice and negation (Lapata & Lascarides 04). For
example, need in example (10) maps to: present,
0, imperfective, active, positive. We also intro-
duced an additional feature where we only en-
coded this information for the main verbal com-
plex in each span.

Syntactic Features It is likely that some re-
lations (e.g., summary) have syntactically less
complex spans than others (e.g., continuation).
To estimate syntactic complexity we determined
the number of NPs, VPs, PPs, ADJPs, and AD-
VPs contained in each span. Information about
the argument structure of a clause may serve as
another measure of syntactic complexity. We
therefore encoded several aspects of argument
structure as well, e.g., whether a verb has a di-
rect or indirect object or whether it is modified
by an adverbial. This information can be easily
extracted from the RASP parse trees. We also in-
cluded information about the subjects, i.e., their
part-of-speech tags, whether they have a negative
aspect (e.g. nobody, nowhere) and the WordNet
classes to which they map (see above).

Cohesion Features The degree of cohesion be-
tween two spans may be another informative fea-
ture. To estimate it we looked at the distribution

of pronouns and at the presence or absence of el-
lipses (cf. (Hutchinson 04)). For the former, we
kept track of the number of first, second and third
person pronouns in each span. We also used sim-
ple heuristics to identify whether either span ends
in a VP ellipsis and included this information as
a feature.

4 Experiments

We conducted three main experiments. First we
assessed how well humans can determine rhetori-
cal relations in the absence of cue phrases. This
gives a measure of the difficulty of the task. We
then determined the performance of our machine
learning models and compared it to two baselines.
Finally, we looked at which features are particu-
larly useful for predicting the correct relation.

4.1 Experiment 1: Human Agreement

As we mentioned earlier, automatically extract-
ing and labelling training data for a super-
vised machine learning paradigm in the way
suggested in this paper and in earlier work
(Marcu & Echihabi 02) relies on the existence of
a certain amount of redundancy between the cue
phrase and other linguistic features in signalling
which rhetorical relation holds. If cue phrases
were only used in cases where a relation cannot
be inferred from the linguistic context alone, any
approach which aims to train a classifier on auto-
matically extracted examples from which the cue
phrases have been removed would fail.

The presence of redundancy in some cases is
evident from examples like (3), where contrast
can be inferred even when the cue phrase is re-
moved. However, there may be other cases where
this is more difficult. To assess the difficulty of de-
termining the rhetorical relation in examples from
which the cue phrase has been removed, we con-
ducted a small pilot study with human subjects.

We used our extraction patterns to automati-
cally extract examples for the four rhetorical re-
lations contrast, explanation, result and
summary (continuation was added after the
pilot study). We then manually checked the ex-
tracted examples to filter out false positives and
randomly selected 10 examples per relation from
which we then removed the cue phrases. We also
semi-automatically selected 10 examples of adja-
cent sentences or clauses which were not related
by any of the four relations. For each example,



we also included the two preceding and following
sentences as context, keeping track of any para-
graph markings. We then asked three subjects
who were trained in discourse annotation to clas-
sify each of the 50 examples as one of the four
relations or as none. All subjects were aware
that cue phrases had been removed from the ex-
amples but did not know the location of the re-
moved cue phrase. We evaluated the annotations
against the gold standard and calculated the aver-
age accuracy. To estimate inter-annotator agree-
ment, we also determined the Kappa coefficient
(Siegel & Castellan 88). The results are shown in
Table 1.

Avg. Accuracy Kappa (pairwise, avg.)
71.25 .61

Table 1: Human performance

While the agreement is far from perfect, it is
relatively high for a discourse annotation task.
Hence it seems that the task of predicting the
correct relation for sentences from which the cue
phrase has been removed is feasible for humans.
However, the accuracy was not equally high for all
relations: result (90%), contrast (83%) and
explanation (75%) seem to be relatively easy,
while summary (57%) is more difficult, and the
accuracy was lowest for the none class (50%).

Interestingly, our findings regarding the relative
ease with which a given relation can be inferred if
the original cue phrase is removed, deviate from
those obtained by (Soria & Ferrari 98), who con-
ducted a similar experiment for Italian. They
found that “additive relations” (like summary)
are easiest to infer, followed by “consequential
relations” (e.g., result and explanation) and
“contrastive relations” (e.g., contrast), which
were found to be the most difficult by far. With-
out further research it is difficult to say where the
difference between our and Soria & Ferrari’s find-
ings stem from. They could be language-specific
(i.e., English vs. Italian), domain-specific (mainly
news texts vs. mixed genres) or due to the differ-
ent taxonomies of relations.

4.2 Experiment 2: Probabilistic
Modelling

Our machine learning experiments involved five
relations: contrast, explanation, result,
summary and continuation. The automatic
extraction method yielded very different amounts

of training data for each of them (see section 3.2).
However, machine learning from skewed data is
highly problematic as it often leads to classifiers
which always predict the majority class (Japkow-
icz 00). To avoid this problem, we decided to
create uniform training (and test) sets which con-
tained an equal number of examples for each re-
lation. The number of examples for the least fre-
quent relation (continuation) was 1,732 and we
randomly selected the same number of examples
for each of the other relations. We used 90% of
this data set for training (7,795 examples) and
10% for testing (865 examples), making sure that
the distribution of the relations was uniform in
both data sets, and evaluated BoosTexter’s per-
formance using 10-fold cross-validation.

For comparison, we also used two baselines. For
the first, a relation was predicted at random. As
there are five relations and all are equally frequent
in the test set, the average accuracy achieved by
this strategy will be 20%. For the second baseline,
we implemented a bigram model along the lines
of (Marcu & Echihabi 02). Table 2 shows the
average accuracies of the three classifiers for all
relations and also for each individual relation.

It can be seen that our feature-rich BoosTexter
model performs notably better than either of the
other two classifiers. It outperforms the random
baseline by nearly 40% and the bigram model by
more than 20%. This difference is statistically
significant (χ2 = 208.12, DoF = 1, p <= 0.01).
Furthermore, the performance gain achieved by
our model holds for every relation with the ex-
ception of explanation where the bigram model
performs better.

Avg. Accuracy
Relation random bigrams BT
contrast 20.00 33.11 43.64
explanation 20.00 75.39 64.45
result 20.00 16.21 47.86
summary 20.00 19.34 48.44
continuation 20.00 25.48 83.35
all 20.00 33.96 57.55

Table 2: Results for BoosTexter (BT) and two
baselines (10-fold cross-validation)

The comparison with the bigram model is not
entirely fair as this method is geared towards
large training sets. For example, (Marcu & Echi-
habi 02) use it on a data set of nearly 10 mil-
lion examples, and their 6-way classifier achieves



49.7% compared with the 5-way classifier reported
here with 33.96% accuracy. However, while it is
possible that the bigram model outperforms our
feature-rich BoosTexter model on large training
sets, obtaining large amounts of training data is
not always feasible, even if these are extracted
automatically. As we have mentioned, some rela-
tions occur relatively infrequently. Others may
appear more often but usually without an un-
ambiguous cue phrase signalling the relation. In
these cases even very large text corpora may not
be big enough to extract sufficient training data
for a bigram model to perform well. In our exper-
iments, this case arose with the continuation
relation, for which less than 2,000 examples could
be extracted from a text corpus of 450 million
words. For such relations, our approach seems a
better choice than the bigram model proposed by
(Marcu & Echihabi 02).

It is interesting that our model and the bi-
gram model differ with respect to which relations
are identified most reliably. Our model achieves
the highest accuracy for continuation and the
lowest for contrast, while the bigram model
achieves the highest accuracy for explanation
and the lowest for result. This suggests that it
might be possible to achieve even better results
by combining both models, for example, by in-
corporating the bigram model as a feature in our
BoosTexter model.

Since our model already achieves fairly good
results for the relation for which we could ex-
tract the fewest training examples (continua-
tion), but less good results for relations for which
we could extract a larger set of training exam-
ples, such as contrast, it may also be possible
to further improve performance by including more
training data for the latter.

4.3 Experiment 3: Feature Exploration

To determine which features are particularly use-
ful for the task, we conducted a further experi-
ment in which we trained an individual BoosTex-
ter model for each of our features. We then tested
these one-feature classifiers on an unseen test set
(again using 10-fold cross-validation) and calcu-
lated the accuracies. Table 3 shows the 10 best
performing features and their average accuracies.

This suggests that lexical features (stems,
words, lemmas) are the most useful features. Ta-
ble 4 shows some of the words chosen by Boos-
Texter as being particularly predictive of a given

Feature Avg. Accuracy
left stems 42.51
left words 41.79
intra/inter 39.18
left pos-tags 34.62
right words 32.82
right stems 32.58
right pos-tags 31.72
left content words 29.78
left noun lemmas 28.30
right span length 28.12

Table 3: Best features (10-fold cross-validation)

relation. Most of the choices seem fairly intuitive.
For instance, an explanation relation is often
signalled by tentatively qualifying adverbs such
as perhaps or probably, while summary and con-
tinuation relations frequently contain pronouns
and contrast can be signalled by words such
as other, still or not etc. Of course the predic-
tive power of such words may be to some extent
domain dependent. Our examples came largely
from the news domain and the situation may be
slightly different for other domains.

Table 3 also suggests that the lexical items in
the left span are more important than those in the
right span. For example, the feature left stems is
10% more accurate then the feature right stems.
This makes sense from a processing perspective:
if the relation is already signalled in the left span
the sentence will be easier to process than if the
signalling is delayed until the right span is read.

Relation Predictive Words
contrast other, still, not, . . .
explanation perhaps, probably, mainly, . . .
result undoubtedly, so, indeed, . . .
summary their, this, yet . . .
continuation you, it, there . . .

Table 4: Words chosen as cues for a relation

Another feature which proves very useful is in-
tra/inter, which encodes whether the relation is
intra- or inter-sentential. BoosTexter predicts
continuation if the relation is inter-sentential
and explanation otherwise. This decision rule
is probably responsible for the high accuracy
achieved for continuation as most continua-
tion relations are indeed inter-sentential (though
there are exceptions).



5 Conclusion

We have presented a machine learning method
for automatically classifying discourse relations
in the absence of cue phrases. Our method uses
feature-rich models which combine a wide variety
of linguistic features. We employed supervised
machine learning techniques to train these models
but extracted and labelled our training data au-
tomatically using predefined extraction patterns.
Consequently no annotation effort is required.

We tested our method on five rhetorical rela-
tions and compared the performance of our mod-
els to that achieved by a bigram model. We found
that our feature-rich models significantly outper-
form the simpler bigram models, at least on rel-
atively small training sets. This means that our
method is particularly suitable for relations which
are rarely signalled by (unambiguous) cue phrases
(e.g., continuation). In such cases, it is difficult
to obtain sufficiently large training sets that a bi-
gram model will perform well, even if the training
set is obtained automatically from very large text
corpora (manually constructing sufficiently large
training sets is, of course, equally problematic).

In future research, we plan to conduct classi-
fication experiments with the most frequent rela-
tions to investigate whether our models are indeed
outperformed by bigram models on large training
sets and if so at what point this happens.

So far we have only tested our method on ex-
amples from which the cue phrases had been re-
moved and not on examples which occur natu-
rally without a cue phrase. However, these are ex-
actly the types of examples at which our method
is aimed. So we also intend to create a small,
manually labelled, test corpus containing natu-
rally occurring examples without cue phrases and
test our method on this to determine whether
our results carry over to that data type; the
RST Discourse Treebank (Carlson et al. 02)
could be used as a starting point for this (cf.
(Marcu & Echihabi 02)).
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