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1 Introduction

1.1 General remarks

The field of morphology has as its domain the study of what a word is in
natural languages. In practice, this has meant the study of four relatively
autonomous aspects of natural language: (1) the identification of the lexicon
of a language, (2) morphophonology, (3) morphosyntax, and (4) morphological
decomposition, or the study of word-internal structure.1

At first blush, identifying the lexicon of a language—what the words are—
may seem simple, especially in languages which are conventionally written
with spaces between words, but as we shall see below, the task is more com-
plicated at more points than one would expect, and in some scientific con-
texts we may be interested in knowing under what conditions the spaces that
mark separation between words can be predicted. To explain what points (2)
through (4) above cover, we introduce the notion of morph—a natural, but
not entirely uncontroversial notion. If we consider the written English words
jump, jumps, jumped, and jumping, we note that they all begin with the string
jump, and three of them are formed by following jump by s, ed, or ing. When
words can be decomposed directly into such pieces, and when the pieces recur
in a functionally regular way, we call those pieces morphs. With the concept
of morph in hand, we may consider the following definitions:

• Morphophonology. It is often the case that two or more morphs are simi-
lar in form, play a nearly identical role in the language, and can each be
analytically understood as the realization of a single abstract element—
“abstract” in the sense that it characterizes a particular grammatical func-
tion, and abstracts away from one or more changes in spelling or pronunci-
ation. For example, the regular way in which nouns form a plural in English
is with a suffixal -s, but words ending in s, sh, and ch form their plurals
with a suffixal -es. Both -s and -es are thus morphs in English, and we
may consider them as forming a class which we call a morpheme: the pair
of morphs {s, -es}, whose grammatical function is to mark plural nouns.
The principles that are involved in determining which morph is used as the
correct realization of a morpheme in any given case is the responsibility

1 I am endebted to many friends and colleagues, both for conversations on the
topics discussed in this paper and for comments on an earlier draft, including Carl
de Marcken, Paul Cohen, Walter Daelemans, Tomaž Erjavec, Antonio Galves,
Sharon Goldwater, Yu Hu, Mark Johnson, Chunyu Kit, Ursula Klenk, Kimmo
Koskenniemi, Colin Sprague, Richard Sproat, Antal van den Bosch, J. G. Wolff,
Aris Xanthos, and the editors of this volume; I hope that I have succeeded in
correcting the errors they pointed out to me. Reader, bear in mind that all the
ideas presented here have been simplified to improve comprehensibility. As always,
if you are interested, read the original.
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of morphophonology. Morphophonology is the shared responsibility of the
disciplines of phonology and morphology.

• Morphosyntax. Syntax is the domain of language analysis responsible for
the analysis of sentence formation, given an account of the words of a
language.2 In the very simplest cases, the syntactic structure of well-formed
sentences in a language can be described in terms of atomic and unanalyzed
words, but grammar is never really that simple. In reality, the morphs that
appear inside one word may also specify information about other words
in the sentence—for example, the verbal suffix -s in Sincerity frightens
John specifies that the subject of the verb is grammatically singular. Thus
statements about syntax inevitably include some that peer into the internal
structure of at least some words in a language, and in many languages
this is the rule rather than the exception. Morphosyntax deals with the
relationship between the morphemes found inside one word and the other
words that surround it in the larger sentence; it is the shared responsibility
of the disciplines of syntax and morphology.

• Morphological decomposition. While English has many words which con-
tain only a single morpheme (e.g., while, class, change), it also has many
words that are decomposable into morphs, with one or more suffixes (help-
ful, thought-less-ness), one or more prefixes (out-last) or combinations (un-
help-ful). But English is rather on the tame side as natural languages go;
many languages regularly have several affixes in their nouns, adjectives,
and even more often, their verbs (e.g., Spanish bon-it-a-s, which consists
of a root meaning good, a diminutive suffix -it, a feminine suffix -a, and
a plural suffix -s).

In the remainder of this introductory section, we will give a brief overview
of the kinds of questions that have traditionally been the focus of the study
of morphology in general linguistics. This will serve as background to the
discussion of the following three questions which are specifically computational
in character.

(1) Can we develop—and if so, how—a language-independent algorithm that
takes as input a large sequence of symbols representing letters or phonemes
and provides as output that same sequence with an indication of how the
sequence is divided into words? This question puts into algorithmic form
the question of how we divide a string of symbols into words.

(2) How can we develop a language-independent algorithm that takes as input
a list of words and provides as output a segmentation of the words into
morphemes, appropriately labeled as prefix, stem, or suffix—in sum, a
basic morphology of the language that produced the word list?

(3) How can we implement our knowledge of morphology in computational
systems in order to improve performance in natural language processing?

2 See chapters 4,10, and 15 in this book.
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1.2 Morphology

Users of natural languages (which is to say, all of us) need no persuasion
that words are naturally occurring units. We may quibble as to whether ex-
pressions like of course should be treated as one word or two, but there is
no disagreement about the notion that sentences can be analytically broken
down into component words. Linguists and others who think deeply about
such questions as “what is a word?” generally focus on the idea that there is
evidence in each language from phonology, morphology, syntax, and semantics
which points in the direction of a natural chunk corresponding to the tradi-
tional notion of word. From a phonological point of view, phenomena that
occur inside a word are often quite distinct from phenomena that occur at
word-boundary—the conditions under which a t is a flap in American English
differ considerably in this way, for example. In a similar way, we find that at
the point in an utterance between two words, we can expand the utterance
by adding additional material. For example, we can convince ourselves that
their is a separate word, and not a prefix to the word dream, because we can
say: John and his wife will follow their—or at least his—dream next year.

There are some difficult intermediate cases which linguists call clitics, mor-
phemes whose status as a full-fledged word is dubious; the possessive suffix
′s in English is such a case, because although in many respects it seems like
a suffix to the word that precedes it, it may nonetheless be syntactically and
semantically associated with a preceding phrase, as in an example like a friend
of mine’s first husband (contrast this with a friend of my first husband).

In all languages, or virtually all, it is appropriate to analytically break
words down into component pieces, called morphs, and then to bundle morphs
back into the functional units we call morphemes; such an analysis is part of
the functionality of a morphology, and is the central subject of this chapter
(when a morpheme corresponds to only a single morph, as is often the case, we
generally ignore the difference between a morph and a morpheme). In addition,
we expect of a complete morphology that it will associate the appropriate
set of morphosyntactic features with a word, to the extent that the word’s
morphological decomposition can serve as a basis of specifying those features.
Thus books should be analyzed as book plus a suffix s, and the suffix s should
be marked as indicating plurality for nouns in English.

Morphologies are motivated by four considerations: (1) the discovery of
regularities and redundancies in the lexicon of a language (such as the pattern
in walk:walks:walking :: jump:jumps:jumping); (2) the need to make explicit
the relationship between grammatical features (such as nominal number or
verbal tense) and the affixes whose function it is to express these features; (3)
the need to predict the occurrences of words not found in a training corpus;
and (4) the usefulness of breaking words into parts in order to achieve better
models for statistical translation, information retrieval, and other tasks that
are sensitive to the meaning of a text.
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Thus morphological models offer a level of segmentation that is typically
larger than the individual letter,3 and smaller than the word. For example,
the English word unhelpful can be analyzed as a single word, as a sequence
of nine letters, or from a morphological point of view as a sequence of the
prefix un, the stem help, and the suffix ful.

The distinction between inflectional morphology and derivational mor-
phology is one drawn by most accounts of morphology, but it remains a con-
troversial question for some as to whether a clear line can be drawn between
the two. The intuition that lies behind the distinction is reasonable enough;
to illustrate this, let us consider an example from English. We may wish to
say that jump, jumps, and jumped are three words, but they are all different
versions (in some sense) of a single verb stem. The verb stem (jump) is coher-
ent in three ways: it has a recognizable phonological form (jump), it shares a
coherent semantic content, and it is inflected in ways that it shares with many
other stems: in particular, it takes a suffixal -s in the third person singular
present tense, and an -ed in the past tense. In addition to the characteristics
just mentioned, inflectional affixes also are usually peripheral—if they are suf-
fixes, the inflectional suffixes are at the very end of the word, and if prefixes,
at the very beginning, and while they contribute grammatical information to
the word they contain, they do not shift the part of speech of their word. The
suffixes -s, -ed are taken to be inflectional suffixes, and they differ from deriva-
tional suffixes such as -ity (as in sanity) or -ness (as in goodness, truthiness4)
or -ize (as in radicalize, winterize). Derivational affixes more often than not
play the role of indicating a change of part of speech, in the sense that sane is
an adjective, and san-ity is a noun, just as radicalize and winterize are verbs,
but contain within them stems of a different category (adjective and noun,
respectively). In addition, the semantic relationship between pairs of words
related by derivational affixes is often far less regular than that found between
pairs of words related by inflectional affixes. Thus, while the relationship be-
tween jump and jumped, walk and walked, and so on, is semantically regular,
the same cannot be said of the relationship between words such as woman
and womanize, author and authorize, and winter and winterize.5

For all of these reasons, most accounts of morphology distinguish between
the analysis of a word’s inflectional morphology, which isolates a stem (an in-
flectional stem) from its inflectional affixes, and the word’s derivational mor-
phology, which further breaks the (inflectional) stem into component pieces.

3 Since computational linguists have traditionally interested themselves more with
written language than spoken language, I write here of letters rather than
phonemes, but the reader who is interested in spoken language should substi-
tute phoneme for letter in the text.

4 http://en.wikipedia.org/wiki/Truthiness
5 There are two suffixes -ing in English; the one that appears in sentences in the

progressive (John is running) is inflectional; the one that creates nominals is
derivational (No singing of songs will be tolerated.)
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Thus winterized is analyzed into a stem winterize plus an inflectional suffix ed,
and the stem winterize is divided into a stem winter plus a derivational suffix
ize. The term root is often used to refer to a stem that cannot be morpho-
logically decomposed. An inflectional stem is associated with a single lexical
category, such as noun, verb, adjective, etc. Just as importantly, the inflec-
tional stem is the item in a lexicon which can be (and usually is) associated
with a particular meaning, one that is generally not strictly predictable from
the meanings of its components.

It is not unusual to find situations in which (by what I have just said)
we find two stems that are spelled and pronounced identically: walk is both
a noun and a verb, for example. The term conversion is often used to refer
to this situation, in which a stem is (so to speak) converted from one part of
speech to another without any overt affixation, though such analysis generally
assumes that one can determine which of the two (noun or verb, in this case)
is the more fundamental category of the two, on a stem by stem basis.

Inflectional stems can also be created by a process of compounding, as in
watchdog or eyepatch. Such compound stems may include inflectional affixes,
though many languages impose rather severe restrictions on the inflectional
morphology permitted inside a compound (this is distinct from the case in
which inflectional affixes “attach” to compounds, as in watchdog-s, and ex-
ceptions exist, such as months-long, which is quite different in meaning from
month-long). In some languages, a compound is formed by concatenating two
stems; in others, a short linking element appears between them. The linking
element of Greek compounds, -o-, appears in many compounds borrowed into
English, such as in hipp-o-potamus.

All of the broad generalizations that I have suggested to this point, like
most such broad generalizations, only go so far, and there are always phenom-
ena in a natural language which demand a more complex view. I will sketch
here some of the ways in which complexities arise most often.

First of all, in inflectional systems, there are typically a set of anywhere
from two to a dozen relatively independent grammatical features which may
be relevant to a particular word class, such as noun or verb. For example, a
verb may be specified for the person and number of its subject, of its object,
and for its tense, and for other characteristics as well. Only rarely—indeed,
vanishingly rarely—is each such feature realized separately as its own morph.
In most cases, it is a small tuple of features that is linked to a particular affix,
as in the case of the English verbal suffix -s, which marks 3rd person & singular
& present-tense. On the other hand, it is often the case that a single affix is
used to mark more than one tuple of features; in written French, the suffix -is
marks the present tense singular subject agreement marker for a certain class
of verbs; for example, finis is either ‘(I) finish’ or ‘(you (sg.)) finish’, in either
the 1st or 2nd person, but not in the 3rd person(which is spelled finit).

For this reason, linguists often think of inflectional systems as being hyper-
rectangles in a large space, where each dimension corresponds to a grammat-
ical feature, and where the edge of a hyper-rectangle is divided into intervals
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corresponding to the feature values that the feature may take on (that is,
person is a feature, and it may take on the values 1st, 2nd, or 3rd ; number
is a feature, and it may take on the values singular and plural, in some lan-
guages). Each affix will be associated with one or, quite often, several small
sub-hyperrectangles in such a system.

The complexities do not stop there. It is often the case that there are two
or more forms of the stem used, depending on which subpart of the inflectional
hyper-rectangle we are interested in. An extreme case is that of the stem went
in English, used as the stem in the past, when go is used otherwise. This case
is a bit special, since the form of go and went is so different (when the stems
are this different, linguists refer to this as suppletion), but it is often found
that several related (but distinct) stems will be used for different parts of the
system. In French, for example, the present tense stem for ‘write’ is spelled
‘écri-’ in the singular, but ‘écriv’ in the plural. This is often referred to as
stem alternation.

In addition, a language may employ a whole arsenal of different inflec-
tional hyper-rectangles, even within a single lexical category. The Romance
languages are perfectly typical in having between three and six so-called ‘verb
classes,’ which employ quite different sets of suffixal patterns for marking
precisely the same set of grammatical features. It is the verb stem which de-
cides which inflectional set will be used for its morphology. See Goldsmith &
O’Brien (2006).

Finally, we must acknowledge that not all morphology is properly thought
of as the concatenation of morphs. In English, and many of the other Indo-
European languages, we find inflectional patterns on verbs which consist of
sets of stems (these are called strong verbs) that differ primarily with regard
to the vowel: the past of stand is stood, the past of sing is sang, and the
past of catch is caught. We will focus on those aspects of morphology which
are strictly concatenative—in which words can be analyzed as sequences of
morphs—but we will return to the treatment of the more general case below
as well.

1.3 Static and dynamic metaphors

Inflectional morphology is complex in most natural languages. It is common
for nouns to be marked morphologically for number and case, and for verbs
to be marked morphologically for tense, person, number, mood (whether the
verb is in the indicative or the subjunctive), and syntactic position (whether
the verb is in a subordinate clause of the sentence or not), for example. In
fact, the hallmark of inflectional morphology—how we recognize it when we
see it—is the appearance of several features that are logically orthogonal to
one another, all of which are relevant for the realization of all, or most, of the
words in a given part of speech (noun, verb, adjective). To put that a bit more
concretely: to know Latin morphology is to know that a given verb is specified
for the features of person, number, tense and mood. The verb cantō is in the
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first person, singular, present tense indicative form, and the same
is true of a very large, and potentially unbounded, set of verbs ending in -ō.

Lying behind that very specific knowledge is the understanding that first
person is a value of the feature person, that singular is a value of the feature
number, that present is a value of the feature tense, and that indicative
is a value of the feature mood. There are some dependencies among these
features: there are more tenses when the mood is indicative and fewer when it
is subjunctive, but these dependencies are the exception rather than the rule
among inflectional features. There is no logical ordering of the features, for
the most part: there is no logical or grammatical reason for person to precede
number, or to follow it (there may well be linear ordering of the morphemes
that realize these morphemes, though.) For all of these reasons, inflectional
systems can encode many different combinations of feature specifications—
quite unlike what we find with derivational morphology.

Some regularities in the morphology of a language are best expressed in
terms that refer only to these inflectional features: for example, while the
feature tense in Spanish may take on four values in the indicative mood
(present, future, aorist, and imperfective), it takes on only two val-
ues in the subjunctive mood (present and past); in German, the forms of
the nominative and accusative are the same for all neuter nouns. On the
other hand, other generalizations address characteristics of the phonological
realization of these features as morphs: in Finnish nouns, plural number is
marked (temporally, graphically) before case.

Much of contemporary linguistic theory is dominated in a curious way
by the belief that there is a correct order in which various aspects of the
representation of a word or sentence is constructed ; derivational theories are
the clearest example of this. Reflecting on this, Stump 2001 distinguishes be-
tween incremental approaches, in which the process of adding an affix also
adds morphosyntactic features, and realizational approaches, in which the
process of adding an affix has access to a representation in which morphosyn-
tactic features are present (or already present, as a derivationalist would have
it). However, it is frequently the case that the distinction between these two
approaches vanishes in a computational implementation, either because the
analysis is conceptually static rather than dynamic (that is, it places well-
formedness conditions on representations rather than offering a step-by-step
method of producing representations), or because the dynamic that the com-
putational implementation embodies is a different one. See Roark & Sproat
(2006), chapter 3, for a detailed discussion of this point in the context of finite
state transducers.

All of the material presented in this section is the result of the work of
generations of linguists reflecting on many languages. In the next two sections,
we will consider how the problem of learning about words and morphological
structure can be reconstructed as a computational question of learning.
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2 Unsupervised learning of words

In this section, we will discuss the computational problem of discovering words
from a large sequence of symbols that bear no explicit indication of where one
word ends and the next begins. We will start by distinguishing two formula-
tions of this problem: one relatively easy, and the other quite difficult.

2.1 The two problems of word segmentation

Let us consider strings of symbols chosen from an alphabet Σ, which the
reader may think of as the letters of a written language or the sounds of a
spoken language. There are two broad families of ways in which we analyze
the structure of strings of symbols. One uses probabilistic models, which tell
us about the probabilities of selection of elements from Σ in the future, given
the past, typically the very local, recent past. In such models, the structure
that we impose lies in the departure of the system from a uniform distribution,
and the probability of a symbol is typically conditioned by a small number of
immediately preceding symbols. The other uses segmentation models, whose
purpose is to allow for the restructuring of a string of elements from a fine-
grained alphabet (such as Σ) to a coarser set L which we call a lexicon, and
which should be thought of intuitively as a set of substrings generated from
Σ, that is, as a subset of Σ∗. For now, we may simply think of the members
of L as our words. We will focus primarily on the second family of models,
those employing chunking, but I do not wish to even suggest that there is any
sort of incompatibility between the two approaches, because there is not.

Each word w ∈ L is associated with an element of Σ∗, its spell-out—I
write “associated with” rather than “is,” because w may be decorated with
other information, including meaning, syntactic category, and so on; but for
simplicity of exposition, we may assume that no two elements in a lexicon are
associated with the same spell-out. L∗ is any concatenation of words, and any
member s of L∗ has a natural way of being thought of as a member of Σ∗:
any sequence of words is naturally thought of as a sequence of letters, too. So
far, no delimiters, like space or other punctuation, have come into the picture.

We will always assume that each member of Σ is also a member of L
(roughly speaking, each member of the alphabet is a word), and so we can be
sure that any string in Σ∗ corresponds to at least one member of L∗, but in
most cases that we care about, a string in Σ∗ will correspond to more than
one string in L∗, which is just a way of saying that breaking a string into
words is not trivial. Each member of L∗ which corresponds to a given string
of letters we call a parse of that string. The string atone has three natural
non-trivial parses: atone, at one, and a tone, but it has others as well.

The first problem of word-segmentation, then, is to find a method to take
a string that in fact consists of strings of words, but which is presented as
a string of letters with no indication of where one word ends and the next
begins, and then from this string to reconstruct where the word breaks are.
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It is easy to go from such a corpus C1 in which words are separated by spaces
to a corpus C2 in which all spaces have been removed, but can we reconstruct
C1 from C2 with no information beyond word frequency? Given a corpus C1

which indicates word boundaries separating words, we can easily construct
a lexicon L, and a new corpus C2 in which the word boundaries have been
eliminated. Can we find a language-independent algorithm S1(L, C2) that can
reconstruct C1? Put another way, can we define a method (either fool-proof,
or just very good) that is able to put spaces back into a text with no more than
a knowledge of the lexicon of the language from which the text was drawn?

There is no guarantee that such an algorithm exists for a specific language
or for languages in general, nor is there a guarantee that if it exists (for
a language, or for languages) that we can find it. Two families of natural
approaches exist, the greedy and the probabilistic. The greedy approach scans
through the string S: at position i, it looks for the longest substring s∗ in S
beginning at point i that appears in the lexicon; it then decides that s∗ appears
there in S, and it then skips to position i+ |s∗| and repeats the operation. The
probabilistic model assumes a Markov probabilistic model over L∗ (typically
a 0 order or 1st order Markov model), and finds the string in L∗ with the
highest probability among all such strings whose spell-out is S.

In general, we may wish to develop an algorithm that assigns a probability
distribution over possible analyses, allowing for ranking of analyses: given a
string anicecream, we may develop an algorithm that prefers an ice cream to a
nice cream by assigning a higher probability to an ice cream . Linguists work-
ing on Chinese and Japanese have contributed significantly to improvements
in our understanding of this problem (see, e.g., Sproat et al. (1996), Ando &
Lee (2003), Teahan et al. (2000) and the series of Chinese word segmentation
bakeoffs easily found on the internet).

The second problem of word-segmentation is one large step harder than
the first: given a long string of symbols with no breaks indicated, can we infer
what the words are? See Figure 1. This problem asks whether it is possible
find a general algorithm S2 which takes as input a corpus C2, which was
created by stripping boundaries from a corpus C1, and which gives as output
a lexicon L which will satisfy the conditions for the lexicon L needed for S1,
the solution to the first problem.

Since for any large corpus which has been stripped of its word boundaries,
there are an astronomical number of different lexicons that are logically con-
sistent with that stripped corpus, it should go without saying that if we can
solve the second problem for naturally occurring corpora in real languages,
we do not expect it to be extendable to just any randomly generable corpus:
to put it another way, to the extent that we can solve this problem, it will
be by inferring something about the nature of the device that generated the
data in the first place—something about the nature of human language, if it
is natural language that we are exploring.
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Device 1
Stripped corpus

Lexicon
Original corpus

Stripped corpus Device 2 Lexicon
Figure 1

The problem of word segmentation may seem artificial from the point of
view of someone familiar with reading Western languages: it is the problem of
locating the breaks between words in a corpus. In written English, as in many
other written languages, the problem is trivial, since we effortlessly mark those
breaks with white space. But the problem is not at all trivial in the case of a
number of Asian languages, including Chinese and Japanese, where the white
space convention is not followed, and the problem is not at all trivial from
the point of view of continuous speech recognition, or that of the scientific
problem of understanding how infants, still incapable of reading, are able to
infer the existence of words in the speech they hear around them.

Another computational perspective from which the problem of word break-
ing is interesting is this: to what extent do methods of analysis that have
worked well in non-linguistic domains work well to solve this particular prob-
lem? This question is of general interest to the computer scientist, who is
interested in a general way of regarding the range of problems for which an
approach is suitable, and of considerable interest to the linguist, for the fol-
lowing reason. The most important contribution to linguistics of the work of
Noam Chomsky since the mid 1950s has been his insistence that some as-
pects of the structure of natural language are unlearnable, or at the very least
unlearned, and that therefore the specification of a human’s knowledge of lan-
guage prior to any exposure to linguistic data is a valid and an important
task for linguistics. But knowledge of the lexicon of a given language, or the
analysis of the words of the lexicon into morphemes, is a most unlikely candi-
date for any kind of innate knowledge. Few would seriously entertain the idea
that our knowledge of the words of this book are matters of innate knowledge
or linguistic theory; at best—and this is plausible—the linguist must attempt
to shed light on the process by which the language learner infers the lexicon,
given sufficient data. To say that the ability to derive the lexicon from the
data is innate is something with which few would disagree, and to the ex-
tent that a careful study of what it takes to infer a lexicon or a morphology
from data provides evidence of an effective statistically-based method of lan-
guage learning, such work sheds important light on quite general questions of
linguistic theory.
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The idea of segmenting a long string S ∈ Σ∗ into words is based on a
simple intuition: that between two extreme analyses, there must be a happy
medium that is optimal. The two extremes I refer to are the two “trivial”
ways to slice S into pieces: the first is to not slice it at all, and to treat it as
composed of exactly one piece, identical to the original S, while the second is
to slice it into many, many pieces, each of which is one symbol in length. The
first is too coarse, and the second is too fine, for any long string that comes
from natural languages (in fact, for most systems generating strings that are
symbolic in any sense). The first explains too much, in a sense, and overfits the
data; the second explains too little. The challenge is to find an intermediate
level of chunking at which interesting structure emerges, and at which the
average length of the chunks is greater than 1, but not enormously greater
than 1. The goal is to find the right intermediate level—and to understand
what “right” means in such a context. We will have succeeded when we can
show that the string S is the concatenation of a sequence of members of a
lexicon.

2.2 Trawling for chunks

There is a considerable literature on the task of discovering the words of an
unlabeled stream of symbols, and we shall look at the basic ideas behind four
major approaches.

Olivier

The first explicit computational model of word learning is found in Olivier
(1968) (my description of this unpublished work is based primarily on Kit
(2000)). The algorithm begins with a division of the corpus, in some arbitrary
fashion, into successive chapters which will be analyzed, one at a time and
successively. Letting i be 1, we establish an “provisional” lexicon from chapter
i; it could be simply the lexicon consisting of all the individual letters of the
alphabet that is used, and in some provisional fashion a probability distri-
bution is established over the lexicon. Given that lexicon at pass i, we can
relatively easily find the division of the chapter into words that maximizes the
probability of the string, on the assumption that the probability of a string is
simply the product of the (unigram) probabilities of its words. This maximum
likelihood parse provides us with a new set of counts of the items in the lexi-
con, and normalizing, we take these as forming a new probability distribution
over the lexicon. We now modify the lexicon by adding and removing some of
its members. If we find that there is a sequence of two lexicon members that
occurs more frequently than we would expect (by virtue of its frequency being
greater than the product of the frequencies of its individual members), then
we add that word to the lexicon. On the other hand, if a lexicon member oc-
curs only once, we remove it from the lexicon. Having done this, we increment
i, and reapply this process to the next chapter in the corpus.
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This algorithm contains several elements that would be retained in later
approaches to the problem, but in retrospect, we can see that its primary
weakness is that it does not offer a principled answer to the question as to
how large (i.e., how long) the words should be. It avoids the question in a
sense by not re-applying recursively on a single text (chapter), but does not
address the question head-on.

MK10

Another early lexicon-building approach was MK10, proposed by Wolff (1975,
1977). The initial state of the device is a lexicon consisting of all of the letters
of the corpus. The iterative step is a continuous scanning through the text,
parsing the text C at point i (as i goes from 1 to |C|) by finding the longest
string s in the lexicon which matches the text from point i to point i+ |s−1|,
and then proceeding from the next point, point i+ |s|; when i reaches the end
of the corpus, we begin the scan again. The algorithm keeps track of each pair
of adjacent “lexical items” that occur, and when the count of a particular pair
exceeds a threshold (such as 10), the pair is added to the lexicon, all counts
are reset to zero, and the process begins again. In sum, this is a greedy system
that infers that any sequence which occurs at least 10 times is a single lexical
item, or a part of a larger one.

Wolff’s paper includes a brief discussion in which the relevance of his anal-
ysis is explicitly made to a number of important elements, including associa-
tionist psychology, the elimination of redundancy, natural selection, economy
in storage and retrieval, induction, analysis by synthesis, probability match-
ing, and the possibility of extending the algorithm to the discovery of lexical
classes based on neighborhood-based distribution.

Sequitur

Craig Nevill-Manning, along with Ian Witten (see Nevill-Manning & Witten
(1997); Nevill-Manning (1996)) developed an intriguing non-probabilistic ap-
proach to the discovery of hierarchical structure, dubbed Sequitur. They pro-
pose a style of analysis for a string S, employing context-free phrase-structure
rules {Ri} that are subject to two restrictions demanding a strong form of
non-redundancy: (1) no pair of symbols S, T , in a given order, may appear
twice in the set of rules, and (2) every rule must be used more than once.
Violation of either principle gives rise immediately either to the creation of a
new rule (if the first is violated) or to the elimination of a rule (if the second
is violated). Such sets of rules can be viewed as compressions of the original
data which reveal redundancies in the data. An example will make clear how
this is done.

Suppose the data is thecatinthehatisnocat. The algorithm will begin with
a single rule expanding the root symbol S as the first symbol, here t: S → t.
As we scan the next letter, we extend the rule to S → th, and then to S → the,
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and so on, eventually to S → thecatinth. Now a violation of the first principle
has occurred, because th occurs twice, and the repair strategy invoked is the
creating of a non-terminal symbol (we choose to label it ‘A’) which expands
to the twice-used string: A → th, which allows us to rewrite our top rule as
S → AecatinA, which no longer violates the principles. We continue scanning
and extended the top rule now to: S → AecatinAe, still maintaining the
second rule, A → th. Since Ae appears twice, we create a new rule, B → Ae,
and our top rule becomes: S → BcatinB. But now rule A only appears once,
in the rule expanding B, so we must dispense with it, and bulk up B so that
it becomes: B → the. We now see successful word recognition for the first
time. We continue 3 more iterations, till we have S → BcatinBhat. Since at
is repeated, we create a rule for it C → at, and the top rule becomes S →
BcCinBhC. Scanning 6 more times, we arrive at S → BcCinBhCisnocC,
after the final at is replaced by C. We then create a new rule D → cC, leading
to the top rule S → BDinBhCisnoD. Here we stop, and we have the top level
parse corresponding to the− cat− in− the− h− at− isno− cat, with groups
corresponding to the and to c− at. As this example illustrates, the very strict
conditions set on the relationship between the rule set and the compression
representation of the data lead to a powerful method of extracting local string
regularities in the data.

Sequitur is an instance of what has come to be known as grammar-based
compression (Kieffer & En hui Yang (2000)), whose goal is to develop a formal
grammar that generates exactly one string: the text being compressed, and the
grammar itself serves as a lossless compression of the text. That there should
be a logical connection between an optimal compression of a string of symbols
and the structure that inheres in the system that generated the string lies at
the heart of the next perspective we discuss, Minimum Description Length
analysis.

MDL approaches

Some of the most interesting of the probabilistic approaches to word segmen-
tation employ probabilistic models that are influenced by Kolmogorov’s no-
tions of complexity, such as Rissanen’s notion of Minimum Description Length
analysis. 6 These approaches provide explicit formulations of the idea men-
tioned above that word segmentation is a problem of finding a happy medium,

6 For general discussion of this approach, see Rissanen (2007), Li & Vitányi (1993).
The first general exploration of these ideas with application to linguistic questions
was undertaken in Ellison (1994), and several developments along similar lines
appeared in the early to mid 1990s, notably Rissanen & Ristad (1994), Cartwright
& Brent (1994), Brent et al. (1995), Brent & Cartwright (1996), de Marcken
(1996), Cairns et al. (1997), Brent (1999) and Kit & Wilks (1999) as well as Kit
(2000). My discussion here presents a simplified version of the approach that is
common to those accounts.
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somewhere between the two extremal analyses of a text string: one extreme
in which the string is treated as a single, unanalyzed chunk, and the other
in which it is treated as a concatenation of single symbols, each a “chunk”
separate from the previous one and the next one.

In a sense, the problem of discovering what the words are of a text means
giving up any interest in what the specific message is that is encoded there,
at least for the time being. If that sounds paradoxical, just think about it: in
asking what the words are in an utterance and nothing else, we care about
the building blocks of the message, not the message itself. So a hypothesis
about the correct segmentation of a text is, in part, a hypothesis about what
information is in the message being encoded, and what information is part of
the larger system being used to perform the encoding—which is to say, the
language; it is a hypothesis about the factorization of linear information into
system and message. If we say that the entire text (A Tale of Two Cities,
by Charles Dickens, for example) is a single lexical item, then we have truly
missed the generalization that the work actually shares a lexicon with any
other text in English! If we say that the lexicon of the text is simply the 26 or
so letters needed to write it out, then we have also missed the generalization
that there are many often repeated strings of symbols, like it, times, and Paris.

The heart of the MDL approach is the realization that each of those two
extremes results in an overloading of one of two encodings. The first approach
mentioned above, treating the text as a single lexical item, leads to the over-
loading of the lexicon; although it contains only one item, that single item is
very, very long. The second approach leads to a single lexicon, with no more
than a few dozen symbols in it, but specifying what makes A Tale of Two
Cities different from any text which is not A Tale of Two Cities requires
specifying every single successive letter in the text. That is simply too many
specifications: there are far better ways to encode the content of the text than
by specifying each successive letter. The better ways are ones in which there
is a lexicon with the real words of the language, and then a spelling out of
the text by means of that lexicon. Because the average length of the words in
the lexicon is much greater than 1, the description of the text by specifying
each word, one after the other, will take up much less space (or technically,
far fewer bits of information) than specifying each letter, one after the other.
The happy medium, then, is the analysis which minimizes the sum of these
two complexities: the length of the lexicon and the length of the description
of the text on the basis of that lexicon.

It turns out (though this is by no means obvious) that if we make our
lexicon probabilistic, it is easy to measure the number of bits it takes to de-
scribe a specific text S, given a particular lexicon; that number is the negative
base two logarithm of the probability of the text, as assigned by the lexicon
(rounded up to the nearest integer); we write this �−log2 pr(S)�. Probability
plays a role here that is based entirely on encoding, and not on randomness
(i.e., the presumption of the lack of structure) in the everyday sense. Making
the lexicon probabilistic here means imposing the requirement that it assign
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a probability distribution over the words that comprise it, and that the prob-
ability of a word string S is the product of the probability of its component
words (times a probability that the string is of the length that it actually
happens to be). �−log2 pr(S)� specifies exactly how many bits it would take
to encode that particular message, using the lexicon in question. This is not
obvious, but it is true.

How do we measure the number of bits in the description of the lexicon?
A reasonable first approximation would be to calculate how much information
it takes to specify a list of words, written in the usual way from an alphabet
of a particular size. Ignoring a number of niceties, the length of a list of N
words, each of length |wi|, written in an alphabet consisting of m letters, is
log2N +

∑N
i=1 |wi| log2 m, which is very close to the length of the lexicon

(times a small constant), that is to say, the sum of the lengths of the words
that make up the lexicon. This quantity, cL, is naturally referred to as the
complexity, or information content, of the lexicon. We will come back to this,
and consider some alternatives which make the description shorter; what I
have just mentioned is a simple base-line for length, a length that we know
we can easily calculate. In a manner entirely parallel to what I alluded to
in the preceding paragraph, there is a natural way to assign a well-formed
probability to a lexicon as well, based on its complexity cL: it is 2−cL .7

Minimum Description Length analysis proposes that if we choose to ana-
lyze a string S into words (chunks that do not overlap, but cover the entire
string), then the optimal analysis of S is by means of the lexicon L for which
the sum of the two quantities we have just discussed forms a minimum: the
first quantity is -log2 prob S computed using given L, and the second quantity
is CL, which is the number of bits in description of lexicon L.

We can now turn all of this discussion of description length into an algo-
rithm for the discovery of the words of a corpus if we can find a method for
actually finding the lexicon that minimizes the combined description length.8

A number of methods have been explored exploiting the observation that as
we build up a lexicon from small pieces (starting with the individual letters
[Line 1]) to larger pieces, the only candidates we ever need to consider are
pairs of items that occur next to each other somewhere in the string (and

7 The reason for this is that the quantity CL essentially counts the number of 0s
and 1s that would be required to efficiently express the lexicon in a purely binary
format. If we also place the so-called prefix property condition on the encoding
we use, which means that no such binary encoding may be be identical to the
beginning of another such encoding, then it is relatively straight-forward to show
that each such binary expression can be associated with a subinterval of [0,1], and
that these subintervals do not overlap. The final step of deriving a well-formed
probability invovles determining whether there are any subintervals of [0,1] which
have not been put into correspondence with a lexicon, and dealing with the total
length of such subintervals.

8 See pseudocode in Figure 2.

Page: 18 job: goldsmith macro: handbook.cls date/time:2-May-2009/17:28



Contents 19

most likely, a number of times in the string). In short, we batch process the
text: we analyze the whole text several times [Line 2]. We begin with the
“trivial” lexicon consisting of just the letters of the alphabet, but we build
the lexicon up rapidly by iteration. On each iteration, we find the parse which
maximizes the probability of the data, given the current hypothesized lexicon
[Lines 3,4]. We consider as tentative new candidates for the lexicon a pair
of “words” that occur next to each other in the string [Line 5]. We compute
the description length of the entire string with and without the addition of
the new lexical item, and we retain the candidate, and the new lexicon that
it creates, if its retention leads to a reduction in the total description length
[Line 8]. We set a reasonable stopping condition, such as having considered
all adjacent pairs of words and finding none that satisfy the condition in Line
8.
1: Start condition: L ⇐ Σ.
2: repeat
3: π∗ ⇐ argmaxπ∈{parses of D} pr(π), given L.
4: Assign a probability distribution over L based on the counts of words

in π∗.
5: Choose at random two adjacent words, wik

wik+1 ;
6: w∗ ⇐ wik

wik+1 .
7: L∗ ⇐ L∪ w∗.
8: If DL(C,L∗) < DL(C,L), then L ⇐ L∗.
9: until Stopping Condition is satisfied.

10: return arg maxπ∈{parses of D} pr(π), given L.

Figure 2

MDL-based approaches work quite well in practice, and as a selling point,
they have the advantage that they offer a principled answer to the question
of how and why natural language should be broken up into chunks. Many
variants on the approach sketched here can be explored. For example, we
could explore the advantages of a lexicon that has some internal structure,
allowing words to be specified in the lexicon as concatenation of two or more
other lexical entries; de Marcken’s model permits this, thus encouraging the
discovery of a lexicon whose entries are composed of something like morphs.
We return to the general question shortly, in connection with the discovery of
true linguistic morphology.

Hierarchical Bayesan models

In a series of recent papers, Goldwater, Johnson, and Griffiths (henceforth,
GJG) have explored a different approach involving hierarchical Bayesian mod-
els, and they have applied this to the problem of inducing words, among other
things (see Goldwater (2006), Goldwater et al. (2006), Johnson et al. (2006),
Johnson (2008), and also Teh et al. (2006)). Like MDL models, these gram-
mars are non-parametric models, which is to say, in the study of different
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sets of data of the same kind, they consider models with different numbers of
parameters—or to put it more crudely, the model complexity increases as we
give the system more data. GJG describe the models by means of the process
that generates them—where each model is a distribution, or a set of distribu-
tions over different bases—and what distinguishes this approach is that the
history of choices made is cached, that is, made available to the process in
a fashion that influences its behavior at a given moment. The process leans
towards reproducing decisions that it has often made in the past, based upon
a scalar concentration parameter α > 0. After having already generated n
words, the probability that we generate a novel word from an internal base
word-generating distribution is α

α+n , a value that diminishes rapidly as the
process continues. Conversely, the probability of generating word wk which
has already occurred [wk] times is [wk]

n+[wk] .
Such processes share with MDL models (though for quite different reasons)

what sociologists call a Matthew effect (also called a rich get richer effect),
whereby choices that have been selected over the past of the process are more
likely to be selected in the future.

GJG use this process to model the generation of a lexicon, and Gibbs sam-
pling to find the appropriate lexicon parameters.9 We describe the simplest
of their models, the unigram model, here. As we have noted, the process has
three parameters: a concentration parameter α; a finite lexicon, i.e., a finite set
of elements of Σ∗, each of which is associated with a parameter corresponding
to how often that word has been seen in the data at this point; and a base
distribution Φ over Σ∗ used eventually to create new words for the lexicon.

We thus have two abstract objects to consider in connection with any long
unbroken string S: one is a string b of 1’s (yes) and 0’s (no), as to whether a
word-break occurs after the nth symbol of S; and the other is the finite lexicon
(which is what we are trying to figure out, after all). Given S and a particular
b, a specific lexicon follows directly. The Gibbs sampling that is used provides
a path from any initial set of assumptions about what b is (that is, any initial
set of assumptions as to where the word breaks are) to essentially the same
steady-state analysis of S into words. Here is how it does it, and it does not
matter whether we begin with the assumption that there is a break between
every symbol, between no symbols, or that breaks are initially assigned at
random. We will iterate the following procedure until we reach equilibrium:
we select an integer between 1 and |S| − 1, and calculate anew whether there
should be a break there, i.e., we make a new decision as to whether b has a 0
or a 1 at position n, conditioned on the locations of the other breaks specified
in b, which implicitly determines the words in the lexicon and their frequency.
We do this by looking just at the righmost chunk to the left of position n
and the leftmost chunk to the right of position n. For example, if the string is
...isawa − ca − t − inth − ewind... (where the hyphen indicates a break, and

9 On Gibbs sampling, see Mackay (2002), for example.
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no-hyphen indicates no break), and we choose to sample the position between
ca and t, then we calculate the probability of two different strings cum breaks:
the one just indicated, and this one: ...isawa − cat − inth − ewind.... If we
assume words are generated independently of their neighbors (the unigram
assumption), then we need simply compare the probability of ca− t and that
of cat, and that decision will be made on the basis of the probability assigned
by the process we have described. That probability, in turn, will not weigh
heavily in favor of cat over ca and t early on, but if the corpus is in fact
drawn from English, the counts of cat will begin to build up over those of ca
and t, and the local decision made at position n will reflect the counts for all
of the words that occur, given the analysis so far, in the string. GJG show
that if we drop the unigram assumption about words, and assume essentially
that the probability of each word is conditioned by the preceding word (more
accurately, that the parameters of the Dirichlet process selecting a word are
conditioned by the preceding word) and if we let the distribution Φ that
proposes new words itself adapt to the language’s phonotactics (which can be
learned from the lexicon), then results are considerably improved.

2.3 Word Boundary detectors

The very first work on explicit development of boundary detectors was due
to Zellig Harris, but his primary application of the notion was to morpheme-
detection, which we will return to shortly. Nonetheless, his ideas have inspired
many subsequent workers, who have looked to see if there were local charac-
teristics, detectable within a small window of 5 or 6 letters, which would give a
strong indication of where a word boundary falls in a text. We will look at one
recent example, that of Cohen et al. (2002), which makes an effort to detect
word boundaries both by finding likely boundary points and by finding likely
word sequences. Cohen et al. (see also Cohen et al. (2007)) let their hybrid
model vote on the best spot to hypothesize a break to be, and so they call
this a Voting Expert model. Their expert uses the log frequency of a conjec-
tured word-chunk w as its measure of goodness as a word, and their measure
of whether a point i is a good break-point is what they call the boundary
entropy, defined roughly (but only roughly) as the entropy of the frequency
distribution of individual letters that follow the hypothesized word that ends
at point i. Thus, if a string thusifastringisanalyzedat... is analyzed at point
13 as containing the word string stretching from point 7 to point 13, then we
compute the frequency of all of the letters that in fact follow the string string
somewhere in the corpus. The greater the entropy is of that multiset, the like-
lier it is that the ending point of string is a word boundary (on the grounds
that words are relatively poor as regards their ability to impose a decision
on what letter should come next). This is the entropic version, employed by
Hafer and Weiss 1974, of Harris’s successor frequency notion, to which we
return in the next section. Cohen et al. take into account phonological fre-
quency effects by not using observed frequencies, but rather corresponding
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z -scores. For any sequence s of letters of length |s| and frequency f(s), they
know both the average frequency μ(|s|) of distinct observed strings of length
|s| in the text, and the standard deviation from this mean of all of the strings
of length |s|, so everywhere where one would expect to put a probability, they
use a z-score instead (i.e., freq(s)−μ(|s|)

σ ): the measure of goodness of a chunk
is the logarithm of that value, and the familiar notion of conditional entropy
is modified to use this sort of z-score instead of a frequency.

The algorithm makes one pass over the string, shifting a window of limited
size (the authors give an example of width 3, but in actual applications they
use a window of 6, or more); at each stop of the window, the two measures
(goodness of chunk, goodness of break point) each independently select the
point within the window which maximizes their own measure, but looking
only at the small substring within the window (and not, for example, what
had been decided earlier on in the pass to segments “to the left,” so to speak,
except insofar as that information is implicit in the accrued voting). When
the string has been scanned, a (non-linear) counting process decides how the
votes which have been assigned to each point between the letters by the two
measures should be transformed into hypotheses regarding word breaks.

2.4 Successes and failures in word segmentation

The largest part of the failures of all approaches to word segmentation are
failures of level rather than failures of displacement: that is, failures are typ-
ically either of finding chunks that are too large, consisting of common pairs
of words (ofthe, NewYork) or of not so common words composed of common
pieces (commit ment, artificial ly), rather than errors like c hunks, though
those certainly do appear as well. The most interesting result of all of the
work in this area is this: there is no way to solve the word segmentation
problem without also making major progress with the problem of automatic
learning of morphology and syntax. Knowledge of the statistical properties
of strings can be used to infer words only to the extent that the device that
generated the strings in the first place used knowledge of words, and only
knowledge of words, to generate the string in the first place; and in actual
fact, the systems that generate our natural language strings employ systems
at several levels: it is not words, but morphemes that consist of relatively arbi-
trary sequences of letters, and words are the result of a system responsible for
the linear placement of morphemes. In addition, there is a system responsible
for the sequential placement of words—we call it syntax—and it too has a
great impact on the statistics of letter placement. A system that tries to learn
the structure of language on the basis of a model that is far poorer than the
real structure of language will necessarily fail—we may be impressed by how
well it does at first, but failure is inevitable, unless and until we endow the
learning algorithm with the freedom of thought to consider models that take
into consideration the structure that indeed lies behind and within language.
In the next section, we turn to the task of learning morphological structure.
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3 Unsupervised learning of morphology.

In this section, we will discuss the automatic learning of morphology. Most
of the attention in this part of the literature has gone to the problem of
segmentation, which is to say, the identification of the morphs and morphemes
of a language, based entirely on naturalistic corpora. The identification and
treatment of morphosyntactic features is an additional problem, which we
shall touch on only in passing (though it is a real and important challenge).
When we look at a sample of English, we certainly want to discover that jumps
and jumping consist of a stem jump followed by the two suffixes s and ing,
and a solution to the problem of identifying morphs gives us that information;
but at the same time, we would like to know that −s marks the 3rd person
singular present form of the verb. Such information goes well beyond the
problem of segmentation, and brings us to the domain of morphosyntactic
information, an area in which relatively little has been done in the domain of
unsupervised learning of morphology.

3.1 Zellig Harris

All discussions of the problem of automatic segmentation aiming at discov-
ering linguistically relevant units start with the work of Zellig Harris. In the
mid 1950s, he noticed that one could define a function that, informally speak-
ing, specifies how many alternative symbols may appear at any point in the
string, given what has preceded. In light of both the method and the date,
it is impossible not to sense an inspiration from Shannon’s work, which had
just appeared (Shannon & Weaver (1949)). Harris himself published two pa-
pers addressing this approach (1955, 1967), and returned to it briefly in other
works till the end of his life Harris (1991). At least as interesting for our pur-
poses was the computational implementation of Harris’s idea in Hafer & Weiss
(1974). The presentation in this chapter relies primarily on Harris 1967 and
Hafer and Weiss. We consider a family of Harrisian algorithms for segmenting
words into morphemes, given a sample of words W = {wi} from a language,
where each wi ∈ Σ∗, for some alphabet Σ. We wish to associate a real value
with the position that lies between each symbol in each word, and while we
can imagine several slightly different ways to do this, the ways all attempt to
capture the idea of measuring how many different ways the string to the left
can be continued, in view of what we know about the entire set of words W .
The core notion of successorfrequency is defined as follows: The successor
frequency SF(p,W) of a string p in a set of words W is 0 if no words in W
begin with p (i.e., there is no w in W which can be expressed as pα where
α ∈ Σ∗), and, more interestingly, it is equal to the number of distinct symbols
{l1, ..., lk} all of which can follow the prefix p in W : that is, our successor fre-
quency is the size of the set {l1, ..., lk} such that pli is a prefix of a word in W .
A similar definition can be constructed to define the predecessor frequency in
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a mirror-image fashion, specifying how many different letters can immediately
precede any given word-final substring.

Harris’s intuition was that the successor frequency was high, or relatively
high, at points in a string corresponding to morpheme boundaries, and the
same is true for the predecessor frequency. But if the method works well in
many cases, it fails in many others as well, either due to data sparsity, or
to other effects. One such effect arises when the set of suffixes to a given
stem all sharing a common letter (for example, the words construction and
constructive have a peak of successor frequency after constructi, and a peak
of predecessor frequency after construct).

Hafer & Weiss (1974) tested 15 different interpretations of Harris’s algo-
rithm, and found a wide variety in precision and recall of the interpretations,
ranging from “completely unacceptable” when cuts were made at thresholds
of successor frequency, to as high as 91% precision and recall of 61%; this
was the result of making a morpheme cut when either of two conditions was
met: (a) the word up to that point was also a free standing word, and the
predecessor frequency there was 5 or greater; or (b) the successor frequency
at the point was greater than 1, and the predecessor frequency was greater
than 16. One can see that some effort was expended to tune the parameters
to suit the data.

3.2 Using description length

Anybody’s list of words in a language, no matter how it is obtained, con-
tains a great deal of redundancy, for all of the reasons that we discussed in
the first section of this paper: morphological roots appear with a variety of
prefixes and suffixes, but that variety is limited to a relatively small number
of patterns. The discovery of the morphological structure of a language is
essentially the discovery of this kind of redundancy in the lexicon; removing
the redundancy will both shorten the description of the lexicon and take us
closer to an accurate characterization of the morphology. For example, if a
language (in this case, English) contains a set of words walk, walks, walked,
walking, jump, jumps, jumped, jumping, then rather than expressing all eight
of the words separately, we can achieve greater simplicity by extracting the
redundancy inherent in the data by identifying two stems, walk and jump,
and four suffixes, ∅, s, ed, ing. See Figure 3.
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Figure 3

But how do we turn that intuition into a computationally implemented
approach? We employ a hill-climbing strategy, and focus on deciding what
determines the shape of the landscape that we explore, and how to avoid
discovering local maxima that are not global maxima.

We specify first what the formal nature is of our morphology—typically,
a finite state automaton (for a definition of an FSA, see Chapter One[?], and
section 4.1 below). Given the nature of a morphology, it is always possible to
treat a word as an unanalyzed morpheme, and an algorithm will generally
begin by assuming that in the initial state, the morphology treats all words of
the corpus C as unanalyzable single morphemes (Step 1) (see Figure 4). We
will call that state of a morphology M0(C). Some approaches take a one-time
initial step of analysis (Step 2), with the aim of avoiding local optima that
are not global optima. A loop is entered (Steps 3-5) during which hypothe-
ses about morphological structure are entertained; any such hypothesis may
either be dependent on what the current hypothesized morphology M is, or
simply be based on information that is independent of the current M by us-
ing information that was already available in M0, such as how often a string
occurs in the corpus C (Step 4). A simplicity-based approach defines some
notion of simplicity—the function C(M,M′) in line 5—to decide whether
the modified morphology is preferable to the current hypothesis.
1: Start condition: M ⇐ M0(C).
2: Some approaches: bootstrap operation B: M ⇐ B(M0(C)).
3: repeat
4: M′ = F(M,M0)
5: If condition C(M,M′) is satisfied, M ⇐ M′.
6: until Stopping Condition

Figure 4
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A method that employs Minimum Description Length analysis,10 such as
Goldsmith (2001) and Goldsmith (2006), will use description length of the
data as the condition in Step 5: a new morphology is preferred to the current
one if the description length of the data is decreased with the new morphology,
where the description length of the data is the sum of two quantities: (i) the
inverse log probability of the data, and (ii) the length of the morphology as
measured in bits. How are these quantities calculated?

In order to calculate the probability of a word that the FST generates,
we must associate a probability distribution with each set of edges that leave
a given state. Because a word, considered as a string of letters, typically is
associated to only one path through the FST, it is easy to assign probabilities
based on observed frequencies; we count the number of times each edge (ni, nj)
is traversed when all of the data is traversed, and then assign the probability
of going to node nj , given that we are at node ni, as Count(ni,nj)∑

k
Count(ni,nk)

, and

the probability of any path through the FST (hence, of any word that it
generates) is the product of the probabilities associated with each edge on the
path. The number of bits required to encode such a word is, then, the negative
log probability of the word, as just calculated.

How should we compute the length of a morphology in bits? In the discus-
sion of MDL above concerning word segmentation, we saw one natural way
to compute the length of a list of strings, and nothing would be simpler than
to count the number of bits that were required in order to spell out the list
of labels on each of the edges. The result would be log2N +

∑N
i=1 |wi| log2 m,

where N is the total number of morphemes, m the number of symbols in the
alphabet, and the set of labels is the set {wi}.

In our discussion of MDL in connection with word discovery, we suggested
that discovering the right lexicon is a matter of finding the right balance
between a lexicon that was not over-burdened and an encoding of the data that
was not too intricate. Now we are saying something more: we are recognizing
that we were not ambitious enough when we took it for granted that a lexicon
was a list of words, because any lexicon that simply lists all its members is
highly redundant in much the same way that a text in a particular language
that is not analyzed into words is highly redundant. We therefore turn to
the discovery of morphology as the means to reduce the redundancy in the
lexicon.

This suggests a broader understanding of the cost of designing a particular
morphology for a set of data: use information theory in order to make explicit
what the cost of every single piece of the morphology is—which is to say, the
morphology is a labeled, probabilistic FSA. It consists of a set of states {N}
(including a start state, and a set of final, or accepting, states), a set of edges
E ⊂ N × N , a list of morphemes, and a label on each edge consisting of a

10 An open source project that implements such an approach can be found at
http://linguistica.uchicago.edu.
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pointer to an item on the morpheme list. The cost of the list of morphemes
is calculated just as we discussed in section 2.2, in the context of a lexicon of
words. More interesting is the complexity, or cost, in bits associated with the
FSA itself, which is the sum of the cost of each edge (ni, nj) and its associated
label lm. The cost of the edge is −(log prn(ni)+ log prn(nj)), where prn() is a
probability distribution over nodes, or states, based on how often each node is
traversed in parsing the data, as discussed four paragraphs above. The cost in
bits of the pointer to an item on the morpheme list is equal to −log prμ(m),
where prμ() is a probability distribution over the items in the morpheme list,
based on how many words in the corpus are generated by a path which includes
an edge pointing to morpheme m.11

3.3 Work in the field

There has been considerable work in the area of automatic learning of mor-
phology since the 1950s, and quite a bit of it in the last fifteen years or so.
Subsequent to Zellig Harris’s work mentioned earlier, there was work by Niko-
laj Andreev (1965 and 1967, described in Cromm (1997)) in the 1960s, and
later by de Kock and Bossaert 1969, 1974. An interesting paper by Radhakr-
ishnan (1978) in the text compression literature foreshadows some of the work
that was yet to come. Several years later there was a series of paper by Klenk
and others (1989, also Wothke & Schmidt (1992) and Flenner (1995)) which
focused on discovery of local segment-based sequences which would be telltale
indicators of morpheme boundaries. More recently, there has been a series
of papers by Medina Urrea (2000, 2005, 2006), and appproaches employing
MDL have been discussed in van den Bosch et al. (1996), Kit & Wilks (1999),
Goldsmith (2001, 2006), Baroni 2003, and Argamon et al. 2004. Important
contributions have been made by Yarowsky and Wicentowski (see Yarowsky
& Wicentowski (2000)), by Schone and Jurafsky 2001, and Creuz and col-
leagues (see 2002, 2003, 2004, 2005a, and 2005b).

Clark (2001a, 2001b, 2002) explored the use of stochastic finite-state au-
tomata in learning both the concatenative suffixal morphology of English and
Arabic, but also the more challenging case of strong verbs in English and bro-
ken plurals in Arabic, using expectation-maximization [cross-reference in this
book] to find an optimal account, given the training data.12 It is interesting
to note that this work takes advantage of the active work in bioinformat-
ics based on extensions of hidden Markov models, which itself came largely
from the speech recognition community. Memory-based approaches such as

11 That is, if there are a total of V words in the corpus, and a total of M morphemes
in all of the M words (V , but not M , depends on the morphology that we assume),
and if K(m) is the number of words that contain the morpheme m, then the cost
of a pointer to that morpheme is equal to prµ(m) = log2

M
K(m)

.
12 A number of studies have dealt with Arabic, such as Klenk (1994); see also van

den Bosch et al. (2007) and other chapters in that book.
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van den Bosch & Daelemans (1999) (on Dutch) employ rich training data to
infer morphological generalizations extending well past the training data.

Algorithms that learn morphology in a strictly unsupervised way are never
certain about what pairs of words really are morphologically related; they can
only make educated guesses, based in part on generalizations that they ob-
serve in the data. Some researchers have explored what morphological learners
might be able to do if they were told what pairs of words were morphologi-
cally related, and the systems would have to induce the structure or principles
by which they were related. This work is not strictly speaking unsupervised
learning; the learner is helped along considerably by knowledge that pairs of
words are indeed morphologically related.

Let us suppose, for purposes of discussion, that we have determined in some
fashion that the pairs of words that we are given are largely distinguished by
material on the right-hand side of the word: that is, that the system is largely
suffixal. Then, given any pair of related words w1 and w2, where w1 is not
longer than w2, then there are at most |w1+1| ways to account for the pairing,
based solely on treating the relationship as based on morphs. Given the pair
jump/jumped, there are five generalization we might consider, each specifying
a pair of suffixes in that pair of words: ∅/ed, p/ped, mp/mped, ump/umped,
and jump/jumped. As we consider a large set of pairs of words, it is not hard
to see that the correct generalization will generally be the one which occurs
most frequently among a large number of word-pairs. This approach has the
advantage that it can say something useful even about generalizations that
involve a very small number of pairs (e.g., say/said, pay/paid); this is more
difficult for a purely unsupervised approach, because it is difficult for a purely
unsupervised approach to become aware that those pairs of words should be
related, so to speak. An early effort along these lines was Zhang & Kim (1990).
Research employing inductive logic programming to deal with this problem by
automatically creating decisions lists or trees has included Mooney & Califf
(1996) (on English strong verbs), Manandhar et al. (1998), Kazakov & Man-
andhar (1998) (an approach that also employs an algorithmic preference for
simpler morphological analyses), Kazakov (2000)—which presents a very use-
ful survey of work done in the 1990s on computational morphology—Erjavec
& Džeroski (2004), which discusses the case of Slovene in some detail, and
Shalonova & Flach (2007) (English and Russian). Baroni et al. (2002) took
an interesting step of using mutual information between pairs of nearby words
in a corpus as a crude measure of semantic relatedness. It had been noticed
(Brown et al. (1992)) that words that are semantically related have a higher
probability than chance to occur within a window of 3 to 500 words of each
other in a running text, and they explored the consequences for analyzing
pairs of words (looking at English, and at German) that are both formally
similar and with relatively large point-wise mutual information. This work
therefore looks a lot like the work described in the preceding paragraph, but
it does so in a rigorously unsupervised way.
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4 Implementing computational morphologies

Sophisticated computational accounts of natural language morphology go
back more than forty years in the literature; we can still profitably read early
articles such as that by P. H. Matthews (1966).

There have been several excellent book-length studies of computational
morphology in recent years, with considerable concern for actual, real-world
implementation, notably by Beesley & Karttunen (2003) and Roark & Sproat
(2006), as well as Ritchie et al. (1992) and Sproat (1992). Current work in
this area focuses to a very large extent on the use of finite-state transducers
as a means to carry out the functions of morphology. This work was stimu-
lated by the work of Douglas Johnson 1972, Ronald Kaplan and Martin Kay
1981, Kimmo Koskeniemmi 1983, and developed in a number of places by
Lauri Karttunen and colleagues 1993. Beesley and Karttunen’s recent book
is especially detailed and lucid, and contains Xerox software that can be used
by the reader.

A well functioning computational morphology for a language can be vital
for many practical applications. Spell-checking is a humble but honest func-
tion of many products appreciated by a wide range of end-users, and in a
language with a rich inflectional morphology, as we find in languages such as
Finnish, Hungarian, Turkish, the Bantu languages, and many others, the total
number of possible forms that a user might reasonably generate is far greater
than the capacity of a computer to hold in its memory, unless the entire fam-
ily of forms is compressed to a manageable size by virtue of the redundancies
inherent in a computational morphology. It is typically the inflectional mor-
phology which gives rise to the very large number of possible forms for nouns
and verbs, and it is typically inflectional morphology which can most usefully
be stripped off when one wishes to build a document-retrieval system based
not on actual words, but on the most useful part of the words. Syntactic pars-
ing in most languages requires a knowledge of the morphosyntactic features
carried by each word, and that knowledge is generally understood as being
wrapped up in the morphology (primarily the inflectional morphology) of the
language.13 A number of researchers have explored the effect on the quality of
information and document retrieval that is produced by incorporating knowl-
edge of inflectional and derivational morphology, including Harman (1991),

13 Even for a language like English, in which the morphology is relatively simple,
and one could in principle not do too badly in an effort to list all of the inflected
forms of the known words of English, the fact remains that it is rarely feasible
in practice to construct a list of all such words simply by data-scraping—that
is, by finding the words in nature. To be sure that one had obtained all of the
inflected forms of each stem, one would have to build a morphology to generate
the forms, thereby bringing us back to the problem of building a morphology for
the language.
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Krovetz (2000), Hull (1996), Kraaij & Pohlmann (1996), Xu & Croft (1998),
Goldsmith et al. (2001), Larkey (2002), and Savoy (2006).

Let us consider briefly how a practical system can be overwhelmed by
the size of natural language word sets if morphology is not addressed in a
systematic way. In Swahili, a typical Bantu language in this regard, a verb is
composed of a sequence of morphemes. Without pretending to be exhaustive,
we would include an optional prefix marking negation, a subject marker, a
tense marker, an optional object marker, a verb root, a choice of zero of more
derivational suffixes marking such functions as causative, benefactive, and
reflexive, and ended by a vowel marking mood. Subject and object markers
are chosen from a set of approximately 20 options, and tenses from a set of
about 12. Thus each verb root is a part of perhaps 100,000 verbs. Similar
considerations hold in many languages—in fact, almost certainly in the great
majority of the world’s languages.

4.1 Finite state transducers

A large part of the work on computational morphology has involved the use of
finite-state devices, including the development of computational tools and in-
frastructure. Finite state methods have been used to handle both the strictly
morphological and morphotactic, on the one hand, and the morphophonol-
ogy and graphotactics on the other. We have already encountered the way
in which strictly morphological information can be implemented with a finite
state automaton, as in Figure 3. By extending the notion of finite state au-
tomaton to that of finite state transducer, we can use much the same notions
in order to not only generate the correct surface morphemes; we can also cre-
ate a device that can map surface sequences of letters (or phones) to abstract
morphosyntactic features such as number and tense.

Computational morphology has also applied the notion of finite state trans-
ducer (the precise details of which we return to shortly) to deal with the prob-
lem of accounting for regularities of various sorts concerning alternative ways
of realizing morphemes. For example, both the English nominal suffix mark-
ing plural and the English verbal suffix marking 3rd person singular is
normally realized as s, but both are regularly realized as es after a range of
stems which end in s, sh, ch, and z.

We refer to these two aspects of the problem as morphotactics and phonol-
ogy, respectively. Two methods have been developed in considerable detail for
the implementation of these two aspects within the context of finite state de-
vices. One, often called “two level morphology,” is based on an architecture in
which a set of constraints are expressed as finite-state transducers that apply
in parallel to an underlying and a surface representation. Informally speak-
ing, each such transducer acts like a constraint on possible differences that
are permitted between the underlying and the surface labels, and as such,
any paired underlying/surface string must satisfy all transducers. The other
approach involves not a parallel set of finite-state transducers, but rather a
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cascaded set of finite-state transducers, which can be compiled into a single
transducer. A lucid history of this work, with an account of the relationship
between these approaches, can be found in Karttunen & Beesley (2005); a
more technical, but accessible, account is given by Karttunen (1993).

The term “two-level morphology,” due to Koskenniemi (1983), deserves
some explanation: by its very name, it suggests that it is possible to deal with
the complexities of natural language morphology (including morphophonol-
ogy) without recourse to derivations or intermediate levels. That is, for-
mal accounts which are influenced by generative linguistics have tended uni-
formly to analyze language by breaking up phenomena into pieces that could
be thought of as applying successively to generate an output from an in-
put with several intermediate stages. It would take us too far afield to go
through an example in detail, but one could well imagine that the forma-
tion of the plural form of shelf could be broken up into successive stages:
shelf → shelf + s → shelv + s → shelves. Here, we see the suffixation of
the plural ‘s ’ happening (in some sense!) first, followed by the change of f to v,
followed in turn by the insertion of e. In contrast, finite-state automata offer a
way of dealing with the central phenomena of morphology without recourse to
such a step-by-step derivation: hence the term ‘two-level morphology,’ which
employs only two levels: one in which morphosyntactic features and lexical
roots are specified, and one which matches the spelled (or pronounced) form
of the word. We return to this in Section 4.2.

The notion of finite state automaton (often abbreviated as FSA) was first
presented in Kleene (1956), itself inspired by the work of McCulloch & Pitts
(1943) some ten years earlier. An FSA is a kind of directed graph: a directed
graph is by definition a finite set of nodes N , along with a set of edges E,
where an edge is an ordered pair of nodes. Nodes in an FSA are often called
states. For a directed graph to be an FSA, it must be endowed with three
additional properties: it must have a distinguished node identified as its start
state; it must have a set of one or more stopping (or accepting) states; and
it must have a set of labels, L, with each edge associated with exactly one
label in L. While L cannot in general be null, it may contain the null string
as one of its members. In purely mathematical contexts, it is convenient to
assume that each label is an atomic element, indivisible, but in the context
of computational linguistics, we rather think of L as a subset of Σ∗, for some
appropriately chosen Σ. In that way, the morphs of a given language (e.g.,
jump, dog, ing) will be members of L, as will be descriptions of grammatical
feature specifications, such as 1st person or past-tense.

When we explore an FSA, we are typically interested in the set of paths
through the graph, and the strings associated with each such path—we say
that a path generates the string. A path in a given FSA is defined as a
sequence of nodes selected from N , in which the first node in the sequence
is the starting state of the FSA, the last node in the sequence is one of the
stopping states of the FSA, and each pair of successive nodes (ni, ni+1) in the
sequence corresponds to an edge ej of the FSA. We associate a string S with a
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path p simply by concatenating all of the labels of the edges corresponding to
the successive pairs of nodes comprising p. If we take a grammar of a language
to be a formal device which identifies a set of grammatical strings of symbols,
then an FSA is a grammar, because it can be used to identify the set of strings
that correspond to all paths through it. Given a string S in L∗, we can identify
all paths through the FSA that generate S.

Finite state morphologies employ a generalization of the finite-state au-
tomaton called a finite state transducer, or FST, following work by Johnson
(1972). An FST differs from an FSA in that an FST has two sets of labels
(or in principle even more, though we restrict the discussion here to the more
common case), one called underlying labels, LU , and one called surface labels,
LS , and each edge is associated with a pair of labels (lU , lS), the first chosen
from the underlying labels, and the second from the surface labels—it is tra-
ditional, however, to mark the pair not with parenthesis, but with a simple
colon between the two: lU : lS . The FSA thus serves as a sort of translation
system between L∗

U and L∗
S . In fact, an FST can be thought of as two (or even

more) FSAs which share the same nodes, edges, starting states and stopping
states, but which differ with regard to the labels associated with each edge,
and we only care about looking at pairs of identical paths through these two
FSAs. The beauty of the notion of FST lies in the fact that it allows us to
think about pairs of parallel paths through otherwise identical FSAs as if they
were just a single path through a single directed graph. For this reason, we
can say that FSA are bidirectional, in the sense that they have no preference
for the underlying labels or the surface labels: the same FST can translate a
string from L∗

S to L∗
U , and also from L∗

U to L∗
S . If we construct an FST whose

second set of labels is not underlying forms but rather category lables, then
the same formalism gives us a parser: tracing the path of a string through the
FST associates the string with a sequence of categories. Finite state automata
are relatively simple to implement, and very rapid in their functioning once
implemented. See Figure 5.
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Figure 5

4.2 Morphophonology

Rare is the language which does not contain rules of its spelling system whose
effect is to vary the spelling of a morpheme depending on the characteristics
of the neighboring morphemes. English has many such cases: as we noted,
some English words, like wife and knife, change their f to v in the plural;
the plural suffix itself is sometimes s and sometimes es, depending on what
precedes it. Since these patterns tend to recur within a given language, it is
traditional to analyze this by saying that there is a single underlying label for
the morpheme, but two or more surface labels that the transducer relates to
the single underlying label.

Koskenniemi (1983) developed a system of notation widely used in finite
state morphophonology to deal with this. The challenge of the task is to make
explicit when any departure from simple identity is required, or permitted,
between the underlying label u and the surface label s. Koskenniemi’s idea was
that for any given pairing like f : v, we can define a context that either permits
or requires that correspondence, where by a context we mean a specification
of the symbols that appear to the left and to the right, on both the underlying
labels and the surface labels. For example, if every occurrence of underlying
t corresponds to a surface s when and only when an i follows on both the
underlying and surface labels, then we can specify this thusly: t : s ⇔ i : i.
If we wanted to express the generalization that when two vowels were adjacent
on the string of underlying labels, only the second of them appears among the
surface labels, then we would represent it this way: V : ∅ ⇐ V :, where V is
a cover symbol standing for any vowel. The “⇐” is taken to mean that in the
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context described to the right of the arrow, any occurrence of the underlying
label in the pair on the left must be realized as the surface label of the pair
on the left (in this case, as the null symbol). If the arrow pointed to the right,
as in V : ∅ ⇒ V :, the rule would be saying that the correspondence of
underlying V to surface ∅ can only occur when an underlying vowel follows.

In the case of wife/wives, we must account for the pair (f:v). Since this
same pairing is found in a good number of English words, an appealing way
to formalize this is to specify that the morpheme underlying wife contains
a special symbol, which we indicate with a capital F: wiFe. An underly-
ing F corresponds to a surface v, when the plural suffix follows, or in all
other cases to a surface f. If the underlying form of the plural form of wife is
wiFe+NounPlural, then we can express this as: F : v ⇐ e+NounP lural :,
and the associated surface label will be wives.
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5 Conclusions

The computational study of morphology is of interest because of its impor-
tance in practical applications, both present and future, and because of its
theoretical interest. We have seen that the words of a language are not sim-
ply a fixed set of strings chosen from a language’s inventory of letters, or
phonemes; the vocabulary is in fact built out of a set of morphemes in ways
that are potentially quite complex, and in ways that may give rise to complex
modifications of one or more morphemes in a word, each modification of each
morpheme potentially sensitive to the choices of each of the other morphemes
in the word.

While the number of distinct words in a language does not grow as rapidly
with length as the number of sentences in a language does, it is nonetheless
true that the size of the total lexicon of a language is vastly larger than
the size of the set of morphemes used to generate those words. In order to
ensure that a system handles the entire lexicon, it is both practically and
theoretically necessary to generate the lexicon computationally in a way that
reflects the true structure of the morphology of the language. In addition,
the meaning and function of a word is in many respects decomposable into
the meaning and function of its inflectional stem and inflectional affixes, and
so morphological analysis is an important step in statistical and data-driven
methods of machine translation, at least in languages with rich morphologies.

At the same time, the formal structure of the morphological grammar of
a language may be quite a bit simpler than the syntactic grammar, and al-
low for greater success at this point in the task of automatically inferring the
morphology from data with relatively little hand-tagging of the data or contri-
bution on the part of a human linguist. At present, the work on unsupervised
learning in this area has focused on the problem of segmentation, but work
is certain to procede in the direction of choosing the correct structure among
alternative candidate FSAs, given a training corpus. Advances in this area
will shed light on the more general problem of induction of regular languages,
which in turn may be helpful in the goal of induction of more comprehensive
grammars from natural language corpora.
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Li, Ming & Paul Vitányi (1993), An introduction to Kolmogorov complexity and
its applications, Springer-Verlag New York, Inc., New York, NY, USA, ISBN
0-387-94053-7.

Mackay, David J. C. (2002), Information Theory, Inference & Learning Algorithms,
Cambridge University Press, Cambridge.
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