

Speech Sounds

Introduction to Linguistics for Computational Linguists

1

Speech Sounds

- Phonetics Physical basis of speech sounds
 - Physiology of pronunciation, perception
 - Acoustics of speech sounds
- Phonology Patterns of combination of speech sounds
 - Which sequences are allowed (phonotactics)
 - Effects of context on speech

Design Problem

- 10⁴ -10⁵ words in vocabulary
 Compare to animal systems << 100
- "Open" system -- new items added easily
- Rapid learning: 10 year-old has 40K items
 - 11 new words daily
 - Some learned after a single experience
- Problem: how can all this be learned?

Large, Learnable Symbol Set

- 40K independent symbols would be unlearnable.
- Solution:
 - No direct pairing of pronunciation-meaning
 - Symbols are combinations of small set of discrete elements
 - Rules of combination are general -- independent of the meaning of the sign
 - Combination rules learned through entire experience

ТА АLЯЗ ЫК Абуос 言語

Miller's "Exponential Principle"

• Small set of discrete elements combine into large numbers of strings

– consider (very simple!) language with 8 cons.,
5 vowels, syllables only in form CV, words with 4 syllables

CV. CV.CV.CV $8 \times 5 \times \dots \times 8 \times 5 = 40^4 = 2,560,000$ words

• Symbols created through combination

Phonology

- Elements (8 consonants, 5 vowels) are *phonemes*.
- *Syllables* (only in form CV) are one form of organizing principle.
- Organizing (phonological) principles are neuropsychology
- Physical (phonetic) encoding/decoding is physical/physiological

Speech Organs

• "Second-Hand Use"

Organ	Primary	Speech						
Lungs	Breath	Power						
Vocal Folds	Protection, Rigidity	Fluid -> Acoustic Conversion						
Tongue	Digestion	Fine Resonance						
Lips, Teeth	Chewing	Resonance						

"Buzz, Hiss, Pop"

- Speech sounds mostly can be described as
 - buzz of air through larynx
 - hiss of air through tight passageway ([s])
 - pop of air after pressure build-up ([p])
- Often in combination

Speech Breathing

- Every syllable powered by muscle contraction (intracostal muscles between ribs)
- 80/20 exhalation/inhalation (vs. 60/40 during quiet breathing)
- Flow of air through *larynx* may result in *voicing* (buzz of vibration)
 - compare [s] vs. [z], [f] vs. [v]
 - listen / fingers on larynx / fingers in ears

Laryngeal "Buzz"

- "Adam's Apple" at top of *trachea* (windpipe)
- Contain *vocal folds* (cords) that vibrate if close
- Bernoulli effect causes fast opening & shutting (compare "rasberry").
- Regular vibration results in a perceptible tone.

Shaping the Buzz

- Tongue tip, front/blade, back, root
- Lips, teeth, alveolar ridge, palate, velum, uvula
- Velum controls passage to nasal cavities

Bell's Visible Speech

- Melville Bell invented a system for transcribing speech "Visible Speech"
- Tool for teaching deaf children
 But first system for recording sounds exactly
- 1860's lecture tour of Bell's boys --Melville, Edward & Alexander.
 - One brother leaves room (out of earshot)
 - Volunteers solicited for interesting speech, transcribed
 - Brother returns and repeats on basis of transcription

IPA

- One of Bell's boys went on to invent the telephone
- Visible speech evolved into the *International Phonetic Alphabet*, standard for phonetic transcription.
- Enough here to transcribe standard German
- Transcriptions in brackets ['bræ.kɛts]

Hiss of Fricatives

- Turbulent flow past a narrow constriction produces a *hiss* of *frication*
- Present initially in *Fuβ* [f], *Wut* [v], *Hut* [h], medially in *lassen* [s], *lasen* [z], *laschen* [∫], *lachen* [χ]
- In foreign words a voiced version of [5]: Journal [3]

"Pop" of Pressure Release

- When air flow is stopped and then suddenly released, we hear a "pop"
- These are stop consonants aka plosives
- Initially in *Pass* [p], *Bass* [b], *Tasse* [t], dass [d], *Kasse* [k], *Gasse* [g]
- Also (in German) before initial vowels As [?]

Place of Maximal Constriction

- Stops differ in where they block flow
 - Velum closed (nonnasal); raised would be [m,n,ŋ]
- Fricatives likewise [f,v], [s,z], $[\chi]$, and [h]

(Too Many) Consonants

	Bilabial		Labiodental		Dental		Alveolar		Postalveolar		Retroflex		Palatal		Velar		Uvular		Pharyngeal		Glottal	
Plosive	р	b					t	d	~		t	þ	c	Ť	k	g	q	G			3	朝御
Nasal		m		ŋ				n				η		'n		ŋ		N				
Trill		в				******		r										R				10
Tap or Flap								ſ				τ							н. Ц			
Fricative	ф	β	f	v	θ	ð	s	z	ſ	3	ş	z	ç	j	x	¥	χ	R	ħ	٢	h	6
Lateral fricative							1	ţ									•					
Approximant				υ				T			******	ł		j		ų						
Lateral approximant								1				1		λ		L	· .		U.S.			

- Standard German /r/ is uvular [R]; Bavarian alveolar [r]
- Affricates are stop + fricative (in one phoneme)
 - Pfennig [pf], Zeit [ts]
- Los [1] is alveolar lateral

Vowels

- Vowels involve no constriction of air flow
- More fluid, variable than consonants
- But still a limited set of discrete elements
- Good way to see this is to collect the set of vowels

Lexical Set

- [i] Siehe, Biene, Glied
- [y] Bühne, Blüte, Kühe
- [I] bitte, Schimmel, Blitz
- [Y] müssen, füttern, Lücke
- [e] Lehne, nehmen, geben
- [ø] Stöhnen, Föhn, Söhne
- [ε] Wetter, besser, kess
- [œ] Löcher, können, Töpfer •
- [æ] nähme, gäbe, täte
 - if distinctive from [e:]

- [u] Huhn, Mut, Kuh
- [v] Mutter, plus, Kuss
- [o] Sohn, Pfote, los
- [ɔ] Motte, Topf, Sonne
- [a] kahl, Aachen, Raten
- [v] Ball, lachen, Ratten
- [au] Haus, Trauben, Couch
- [ai] heiser, mein, leicht
- [oI] Häuser, Reue, Meute

More on Vowels

- [9] unstressed neutral vowel
 - Liebe, genau, allemal
- Lots of dialect variation
 - e.g., Bavarian [iɛ] *lieb*
- *Pure* vowels can be extended in pronunciation, while *diphthongs* involved a change
 - [i,I,u,y,..] vs. [au,ai,ɔI]

Relative Properties Front Back

- [i] Siehe, Biene, Glied
- [y] Bühne, Blüte, Kühe
- [I] bitte, Schimmel, Blitz
- [Y] müssen, füttern, Lücke
- [e] Lehne, nehmen, geben
- [ø] Stöhnen, Föhn, Söhne
- [ε] Wetter, besser, kess
- [œ] Löcher, können, Töpfer •
- [æ] nähme, gäbe, täte
 - if distinctive from [e:]

Back

- [u] Huhn, Mut, Kuh
- [<code>ʊ</code>] Mutter, plus, Kuss
- [o] Sohn, Pfote, los
- [ɔ] Motte, Topf, Sonne

Central

- [a] kahl, Aachen, Raten
- [v] Ball, lachen, Ratten
- [au] Haus, Trauben, Couch
- [ai] heiser, mein, leicht
- [ɔI] Häuser, Reue, Meute

Relations

- Front/Back
 - [i,I,y,y,e,ø, $\varepsilon,\infty,$ æ] Front
 - [u,ʊ,o,ɔ] Back
 - [a,v] Central
- Close/Open (High/Low)
 - [i,I,y,y,u,v] Close
 - $[e, \emptyset, 0, \Theta]$ Close-Mid
 - [ε,œ,ɔ,ɐ] Open-Mid
 - [æ,a] Open
- Round
 - [y,y,ø,œ] and all back vowels

The Sounds Produced

- Source -- Buzz, Hiss, Pop
- Filter -- Resonance of Oral Cavity
- Source/Filter -- Guitar String/Body

• Example: Vocal folds vibrating at 100 Hz produce harmonics (overtones) at 200, 300, 400, etc. (but with decreasing strength). Mouth and nose strengthen some frequencies, dampen others.

Müller's 'Source-Filter Theory of Voice Production' --From G.Miller's *The Science of Words*

Role of Articulators

- Articulators -- organs that shape sound
- Tongue, lips, palate, velum
- Role -- filter that strengthens some frequencies, dampen others
- Formants characteristic resonant frequencies of vowels, caused by configuration of articulators

Voicing in Consonants

- [p/b, t/d, k/g] distinguished by voicing
 stops build pressure above larynx
- Voice Onset Time (VOT) is start of vocal cord vibration relative to stop release

Stop + Vowel

• Prevoicing (French, Russian [b,d,g])

Unaspirated (French, Russian [p,t,k], German, English [b,d,g])

voicing

• Aspirated (German, English [p,t,k]) -- note puff!

voicing

voicing

Voicing Across Languages

- Few languages distinguish three levels of voicing, but, e.g., Thai does
- Most distinguish two levels
 - voiced/unvoiced
 - always adjacent VOT types
 - either prevoiced vs. unaspirated
 - Dutch, Yiddish among Germanic languages
 - of unaspirated vs. aspirated

Phonetics - Summary

- Phonetics physical basis of speech sounds
- Design problem: provide extendible, learnable symbol set of size 10⁵
 - Soln: small set of phonemes in different orders
- Written via visible speech, IPA
- Production has source and filter
 - Example: vowels' source vocal fold vibration, filter - resonance of oral cavity