The interpretation of focus in contrastive stress sentences

Repeated measures ANOVA
vs.
Mixed-effect models
How do we focus?

- By intonation (stress)
- By certain words: focus particles
 - even
 - only

- Two theoretical accounts:
 1. Reference Set Computation (Reinhart, 2004)
 2. (bidirectional) Optimality Theory (Hendriks, 2010)
Narrow focus vs. wide focus

- De prinses heeft alleen een T-shirt aan de COWBOY gegeven
- (The princess has only given a T-shirt to the COWBOY.)

- **Narrow focus reading**
 1. The princess gave a T-shirt to the cowboy
 2. The only person who got a T-shirt is the cowboy

- **Wide focus reading**
 1. The princess gave a T-shirt to the cowboy
 2. The only thing the princess did was giving a t-shirt to the cowboy
Narrow focus vs. wide focus

- De prinses heeft alleen een T-SHIRT aan de cowboy gegeven
- (The princess has only given a T-SHIRT to the cowboy.)

- Narrow focus reading
 1. The princess gave a T-shirt to the cowboy
 2. The only thing the princess has given to the cowboy, is a T-shirt.
Research questions

How do children assign focus in sentences with the Dutch focus particle *alleen*?
Method

- **Participants**
 - 35 Dutch children
 - Age 8;0-10;11 (m = 9;2)
 - 4 participants excluded due to high trackloss

- **Materials & design**
 - Picture-verification task
 - 2 practice trials, 36 test trials
 - 6 different verbs
 - 6 character combinations
Method

• 2x2 within-subjects design
 1. **STRESS** (default vs. marked)
 2. **PICTURE** (1-item vs. 2-item)
Method

2. **PICTURE** (1-item vs. 2-item)

<table>
<thead>
<tr>
<th>STRESS</th>
<th>MATCH</th>
<th>MISMATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO (default)</td>
<td>IO_2</td>
<td>IO_1</td>
</tr>
<tr>
<td>DO (marked)</td>
<td>DO_1</td>
<td>DO_2</td>
</tr>
</tbody>
</table>
Introduction stimulus + sentence
Fixation cross
Test stimulus + sentence
Test stimulus + sentence
Original analysis: RM ANOVA

- Repeated measures ANOVA for Accuracy

- 2x2 within-subjects design

- No significant interaction between STRESS and PICTURE

- Strong effect for PICTURE ($p < .001$, $F = 79.868$, $\eta_p^2 = .701$)
 - Children distinguish on the basis of the situation
Original analysis: RM ANOVA

> m1.aov<-aov(Correct~stress*match+Error(subj/(stress*match)), data=lezing.by.subj)
> summary(m1.aov)

Error: subj
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 30 58.98 1.966

Error: subj:stress
 Df Sum Sq Mean Sq F value Pr(>F)
stress 1 627.7 627.70 91.2827 1.32e-10 ***
Residuals 30 206.5 6.92

Signif. codes:
 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: subj:match
 Df Sum Sq Mean Sq F value Pr(>F)
match 1 4.27 4.2660 3.4612 0.0727
Residuals 30 36.98 1.233

Signif. codes:
 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: subj:stress:match
 Df Sum Sq Mean Sq F value Pr(>F)
stress:match 1 0.395 0.3952 1.2032 0.281
Residuals 30 9.855 0.3285
Original analysis: RM ANOVA

```r
> ezANOVA(data=lezing.by.subj,dv=Correct,wid=.(subj),within=.(stress,match))

$ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>DFn</th>
<th>DFd</th>
<th>F</th>
<th>p</th>
<th>p&lt;.05</th>
<th>ges</th>
</tr>
</thead>
<tbody>
<tr>
<td>stress</td>
<td>2</td>
<td>30</td>
<td>91.198547</td>
<td>1.322851e-10</td>
<td>*</td>
<td>0.667767588</td>
</tr>
<tr>
<td>match</td>
<td>3</td>
<td>30</td>
<td>3.460532</td>
<td>7.267921e-02</td>
<td></td>
<td>0.013475304</td>
</tr>
<tr>
<td>stress:match</td>
<td>4</td>
<td>30</td>
<td>1.202946</td>
<td>2.814599e-01</td>
<td></td>
<td>0.001263636</td>
</tr>
</tbody>
</table>
```
Why use mixed-effects?

- The Language-as-Fixed-Effect Fallacy
 - Implicit generalizations for subjects and/or items

- Generalization not shown in statistical analyses
 - $F_1 \rightarrow$ what would happen with a new sample of subjects?
 - $F_2 \rightarrow$ what would happen with a new sample of sentences?

- Some coefficients as a fixed instead of a random effect
 - E.g. item (verb, characters)

- Adding more sources of error
New analysis: mixed-effect modeling

- $y_i = a_{j[i]} + bx_i + e_i$
 - $a_j = \mu_a + \epsilon_j$

- $y_i = \mu_a + \epsilon_{j[i]} + bx_i + e_i$

- Random variation due to each subject \rightarrow every subject has its own intercept

- We assume that every subject has a different baseline level for correctly determining focus in contrastive stress sentences.
New analysis: mixed-effect modeling

- $y_i = a_j[i] + b x_j[i] + e_i$
 - $a_j = \mu_a + \epsilon_j$
 - $b_j = \mu_b + \epsilon_j$

- $y_i = \mu_a + \epsilon_j[i] + \mu_b + \epsilon_j[i] + e_i$

- Random variation due to each sentence (verb/characters) \rightarrow
every subject has its own slope for each coefficient

- We assume that every subject react to the (different parts of the)experimental manipulation in a different way.
Why **mixed-effect logistic GLM**?

- Mixed-effect → multiple sources of variation; some of the coefficients can be random instead of fixed

- Logistic regression → binomially distributed error
 - So no normally distributed error with zero mean

- Generalized Linear Models → allow other than normal error distributions
Random intercept(s) models

```r
> m1 <- glmer(Accuracy ~ stress * match + (1 | subj), data = lezing, family = binomial)
> summary(m1)
Generalized linear mixed model fit by maximum likelihood ['glmerMod']
  Family: binomial (logit )
Formula: Accuracy ~ stress * match + (1 | subj)
  Data: lezing

   AIC    BIC   logLik deviance
521.5188 544.5723 -255.7594  511.5188

Random effects:
  Groups   Name       Variance  Std.Dev.  
          subj (Intercept) 0.8556    0.925
Number of obs: 743, groups: subj, 31

Fixed effects: 
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)          3.2792     0.4029   8.138 4.01e-16 ***
stressIO            -5.0590     0.4288  -11.797 < 2e-16 ***
matchMismatch       -1.1545     0.4292  -2.690  0.00715 **
stressIO:matchMismatch  0.7703     0.5333   1.444  0.14860

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
  (Intr) stressIO matchMismatch
stressIO     -0.789
matchMismatch -0.770  0.724
stressIO:matchMismatch  0.617 -0.772 -0.805
```
Random intercept(s) models

![Graph showing intercept per subject for accuracy]
Random intercept

> m3<-glmer(Accuracy~stress*match+(1|subj)+(1|verb),data=lezing,family=binomial)
> summary(m3)

Generalized linear mixed model fit by maximum likelihood ['glmerMod']
Family: binomial (logit)
Formula: Accuracy ~ stress * match + (1 | subj) + (1 | verb)
Data: lezing

AIC BIC logLik deviance
523.5187 551.1829 -255.7594 511.5187

Random effects:
Groups Name Variance Std.Dev.
subj (Intercept) 8.556e-01 9.250e-01
verb (Intercept) 5.704e-10 2.388e-05
Number of obs: 743, groups: subj, 31; verb, 6

Fixed effects:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.2792 0.4029 8.138 4.02e-16 ***
stressIO -5.0590 0.4288 -11.797 < 2e-16 ***
matchMismatch -1.1545 0.4292 -2.690 0.00715 **
stressIO:matchMismatch 0.7703 0.5333 1.444 0.14860

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) stressIO matchM
stressIO -0.789
matchMmismatch -0.770 0.724
stressIO:matchM 0.617 -0.772 -0.805
Random intercept

> anova(m1,m3)
Data: lezing
Models:
m1: Accuracy ~ stress * match + (1 | subj)
m3: Accuracy ~ stress * match + (1 | subj) + (1 | verb)

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
<th>deviance</th>
<th>Chisq</th>
<th>Chi Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>5</td>
<td>521.52</td>
<td>544.57</td>
<td>-255.76</td>
<td>511.52</td>
<td></td>
<td></td>
<td>0.9951</td>
</tr>
<tr>
<td>m3</td>
<td>6</td>
<td>523.52</td>
<td>551.18</td>
<td>-255.76</td>
<td>511.52</td>
<td>0</td>
<td>1</td>
<td>0.9951</td>
</tr>
</tbody>
</table>
Random intercept

```
> m4<-glmer(Accuracy~stress*match+(1|subj)+(1|char),data=lezing,family=binomial)
> summary(m4)
Generalized linear mixed model fit by maximum likelihood ['glmerMod']
  Family: binomial (logit)
  Formula: Accuracy ~ stress * match + (1 | subj) + (1 | char)
  Data: lezing

      AIC    BIC   logLik deviance
    523.5187 551.1829 -255.7594   511.5187

Random effects:
  Groups     Name            Variance     Std.Dev.  
          subj     (Intercept)     8.556e-01  9.250e-01
          char     (Intercept)     8.477e-10  2.912e-05
Number of obs: 743, groups: subj, 31; char, 4

Fixed effects:
                Estimate Std. Error   t value     Pr(>|z|)
(Intercept)     3.2792    0.4029     8.138  4.01e-16 ***
stressIO        -5.0590    0.4288    -11.797  < 2e-16 ***
matchMismatch   -1.1545    0.4292     -2.690  0.00715 **
stressIO:matchMismatch  0.7704    0.5333      1.445  0.14860

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                            (Intr) stressIO matchMs
stressIO       -0.789
matchMs        -0.770  0.724
stressIO:matchMs  0.617 -0.772 -0.805
```
Random intercept

```r
> anova(m1,m4)
Data: lezing
Models:
m1: Accuracy ~ stress * match + (1 | subj)
m4: Accuracy ~ stress * match + (1 | subj) + (1 | char)
            Df   AIC   BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
m1    5 521.52 544.57 -255.76   511.52
m4    6 523.52 551.18 -255.76   511.52    0   1   0.9951
```
Random intercept & slope

```r
> m5 <- glmer(Accuracy ~ stress * match + (1|subj) +
(1 + verb | subj), data = lezing, family = binomial)
Warning message:
In function (fn, par, lower = rep.int(-Inf, n), upper = rep.int(Inf, :
  failure to converge in 10000 evaluations
> summary(m5)
Generalized linear mixed model fit by maximum likelihood ['glmerMod']
  Family: binomial (logit )
  Formula: Accuracy ~ stress * match + (1 | subj) + (1 + verb | subj)
  Data: lezing

         AIC      BIC   logLik deviance
556.2257 676.1038 -252.1129 504.2257

Random effects:
Groups   Name        Variance Std.Dev. Corr                      
subj     (Intercept) 0.5502392 0.74178                      
subj.1   (Intercept) 1.3112086 1.14508                      
          verbKopen   1.0808734 1.03965 -1.00                  
          verbPakken   1.4162988 1.18770 -1.00  1.00        
          verbUitkiezen 0.5287392 0.72714 -1.00  1.00  1.00    
          verbUitlenen 0.0237898 0.15424 -1.00  1.00  0.99  1.00    
          verbVerkopen 0.0003678 0.01918 -0.50  0.50  0.49  0.52  0.57
Number of obs: 743, groups: subj, 31

Fixed effects:                  Estimate Std. Error   t value Pr(>|t|)
(Intercept)                     3.4403     0.4148     8.295  < 2e-16 ***
stressIO                      -5.2256     0.4430    -11.796  < 2e-16 ***
matchMismatch                  -1.1815     0.4409     -2.680  0.00736 **
stressIO:matchMismatch         0.7805     0.5493      1.421  0.15534
---
Signif. codes:  < *** ' *** ' ** ' * ' 0.1 ' 1

Correlation of Fixed Effects:
                             (Intr) stressIO matchMss
stressIO                  -0.802
matchMss                   -0.774  0.725
stressIO:matchMss          0.620 -0.771  0.803
```
Random intercept & slope

```r
> m6 <- glmer(Accuracy ~ stress * match + (1 | subj) + (1 + char | subj), data = lezing, family = binomial)
> summary(m6)

Generalized linear mixed model fit by maximum likelihood ['glmerMod']
  Family: binomial   ( logit )
  Formula: Accuracy ~ stress * match + (1 | subj) + (1 + char | subj)
  Data: lezing

  AIC      BIC    logLik deviance
  538.9592 608.1196 -254.4796    508.9592

Random effects:
  Groups   Name          Variance Std.Dev.  Corr
  subj     (Intercept)  0.003644  0.06037   
  subj.1   (Intercept)  1.407459  1.18636   
                    charFPR     1.210417  1.10019  -0.71
                    charPCA     0.167882  0.40973  -0.76  1.00
                    charVPC     0.123835  0.35190  -0.64  1.00  0.99

Number of obs: 743, groups: subj, 31

Fixed effects:

  Estimate Std. Error   z value Pr(>|z|)
(Intercept)     3.2619     0.3985     8.185 2.72e-16 ***
stressIO        -5.1072     0.4351    -11.737  < 2e-16 ***
mismatchMatch    -1.0848     0.4326    -2.480  0.0121 *
stressIO:mismatchMatch  0.7079     0.5423     1.305  0.1918

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:

         (Intr) stressIO mismatchMatch
stressIO       -0.774
mismatchMatch  -0.769  0.714
stressIO:mismatchMatch  0.606  -0.772  -0.801
Random intercept & slope

> anova(m1,m5)
Data: lezing
Models:
m1: Accuracy ~ stress * match + (1 | subj)
m5: Accuracy ~ stress * match + (1 | subj) + (1 + verb | subj)
        Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
m1  5 521.52 544.57 -255.76   511.52
m5  26 556.23 676.10 -252.11  504.23   7.2931 21 0.9975

> anova(m1,m6)
Data: lezing
Models:
m1: Accuracy ~ stress * match + (1 | subj)
m6: Accuracy ~ stress * match + (1 | subj) + (1 + char | subj)
        Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
m1  5 521.52 544.57 -255.76   511.52
m6 15 538.96 608.12 -254.48  508.96  2.5596   10  0.99
Conclusion

- Children interpret focus differently from adults

- Small effect of match-mismatch

- Controlled experiment $\rightarrow$ items have little influence on variance

- Further research: same experiment with autistic adults
Discussion

- ! Significant effect for stress in replicated original analysis AND new analysis

- Exactly the same AIC for models with random intercept for verb and characters

- Random intercept per subject \( \Rightarrow \) many exactly equal intercepts
References


- *Pictures + audio files all come from the experiment performed by Bart Hollebrandse and Petra Hendriks*
F1, F2

- F1: treatment effect against treatment by subject interaction
  - \( F_1(p-1, (p-1)(r-1)) = \frac{MS_t}{MS_{txs}} \)

- F2: treatment effect against Words-within-Treatments effect
  - \( F_2(p-1, p(q-1)) = \frac{MS_t}{MS_{WWT}} \)

<table>
<thead>
<tr>
<th>Label</th>
<th>Sources of variance</th>
<th>Degrees of freedom</th>
<th>Expected value of mean square</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Treatments ((p))</td>
<td>( p - 1 )</td>
<td>( \sigma_e^2 + \sigma_{ws}^2 + q\sigma_{ts}^2 + r\sigma_w^2 + q\sigma_t^2 )</td>
</tr>
<tr>
<td>WwT</td>
<td>Words ((q)) within Treatments</td>
<td>( p(q - 1) )</td>
<td>( \sigma_e^2 + \sigma_{ws}^2 + r\sigma_w^2 )</td>
</tr>
<tr>
<td>S</td>
<td>Subjects ((r))</td>
<td>( r - 1 )</td>
<td>( \sigma_e^2 + \sigma_{ws}^2 + \sigma_s^2 )</td>
</tr>
<tr>
<td>T \times S</td>
<td>Treatments \times Subjects</td>
<td>((p - 1)(r - 1))</td>
<td>( \sigma_e^2 + \sigma_{ws}^2 + q\sigma_{ts}^2 )</td>
</tr>
<tr>
<td>S \times WwT</td>
<td>Subjects \times Words within Treatments</td>
<td>((p - 1)(r - 1))</td>
<td>( \sigma_e^2 + \sigma_{ws}^2 )</td>
</tr>
</tbody>
</table>