EDUCATION AND VOCABULARY

MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY

- 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988).
- Dutch children spend 5.5 hours/day in front of a screen (Valkenburg, 2013).
- Most of this input is in English.
- How much does education contribute?

RESEARCH QUESTION

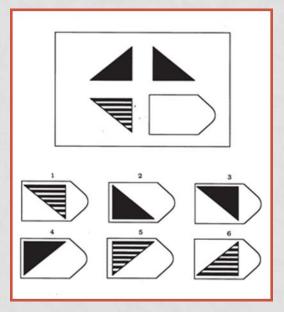
Does the amount of time children are taught English weekly predict the size of their English vocabulary, or are there other factors – and if so, to what extent are they correlated with English vocabulary?

STUDY

Participants

- 72 Dutch children;
- Primary school classes 5 and 6;
- Age 8 10, but expressed in months (m=113.5);
- 33 males, 39 females.
- Schools matched for
 - Low-risk;
 - High SES;
 - Urban environment;
 - No other official languages (like Frisian);
 - Cito scores.

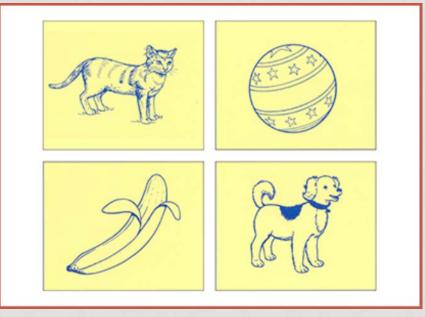
STUDY


• Hours of English:

- School 1, which teaches 4 hours of English weekly. We tested 32 students, 4 of which were left out due to missing or unusable data*.
- School 2, which teaches 2 hours of English weekly. We tested 34 students, 10 of which were left out.
- School 3, which teaches no English in groups 5 and 6 (control). We tested 31 students, 11 of which were left out.

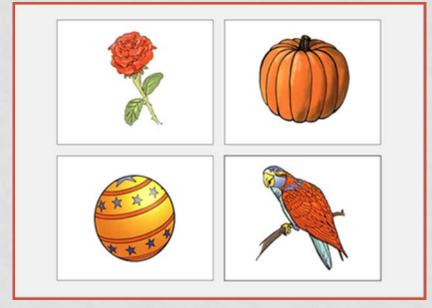
* Technical problems, learning disabilities, etc.

TOOLS


- Raven intelligence test, power version:
 - 48 questions;
 - 20 minutes;
 - Score = total correct.

Example Raven exercise, from http://www.talentlens.nl

TOOLS


- Peabody NL (language aptitude):
 - Dutch words presented over headphone;
 - Subjects must click on matching picture out of 4;
 - Score = total correct;
 - Increasing difficulty;
 - Max score = 204.

Example Peabody NL exercise. Test developed by Pearson and software developed by Dr. Claire Stevenson, University of Leiden.

TOOLS

- Peabody EN (English vocabulary):
 - English words presented over headphone;
 - Subjects must click on matching picture out of 4;
 - Score = total correct;
 - Increasing difficulty;
 - Max score = 228.

Example Peabody EN exercise. Test developed by Pearson and software developed by Dr. Claire Stevenson, University of Leiden.

FORMULA

Peabody EN score_i = $(b_0 + b_1 \text{ hours}_i + b_2 \text{ aptitude}_i + b_3 \text{ age}_i + b_4 \text{ intelligence}_i) + \varepsilon_i$

SIMPLE REGRESSION

R Output

> englishSR<-Im(pben ~ hours, data=english)
> summary(englishSR)

Call: Im(formula = pben ~ hours, data = english)

Residuals:

Min 1Q Median 3Q Max -36.87 -25.34 -15.32 20.57 110.91

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 31.318 6.886 4.548 2.21e-05 *** hours 4.388 2.505 1.752 0.0842.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Residual standard error: 34.39 on 70 degrees of freedom Multiple R-squared: 0.04199, Adjusted R-squared: 0.0283 F-statistic: 3.068 on 1 and 70 DF, p-value: 0.08424

- Hours of English explains only 4.2% of the variation in PBEN.
- Not significant.

MULTIPLE REGRESSION

R Output

> englishMR<-Im(pben ~ hours + age + raven + pbnl, data=english)
> summary(englishMR)

Call:

Im(formula = pben ~ hours + age + raven + pbnl, data = english)

Residuals:

Min 1Q Median 3Q Max -46.274 -15.792 -3.031 18.155 58.196

Coefficients:

```
      Estimate Std. Error t value Pr(>|t|)

      (Intercept) -275.7125
      46.2748
      -5.958
      1.05e-07
      ***

      hours
      -0.3710
      2.2422
      -0.165
      0.869098

      age
      1.2612
      0.3471
      3.633
      0.000543
      ***

      raven
      1.2722
      0.4780
      2.661
      0.009732
      **

      pbnl
      1.4268
      0.2486
      5.739
      2.51e-07
      ***
```

```
----
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 25.55 on 67 degrees of freedom Multiple R-squared: 0.4939, Adjusted R-squared: 0.4637 F-statistic: 16.34 on 4 and 67 DF, p-value: 2.172e-09

- Age, intelligence and aptitude account for an extra 45%.
- Adjusted R² is 3% less.
- Highly significant at P < 0.001.

INTERPRETATION

- As hours increases by one unit, PBEN decreases by 0.37 units (!)
 - However, the contribution of this variable to the model is highly insignificant at P = 0.87.
- As age increases by one unit, PBEN increases by 1.25 units.
 - Highly significant contribution at P < 0.001
- As intelligence increases by one unit, PBEN increases by 1.19 units.
 - Highly significant contribution at P < 0.01
- As aptitude increases by one unit, PBEN increases by 1.5 units.
 - Highly significant contribution at P < 0.001

STANDARDIZED B-VALUES

R Output

> Im.beta(englishMR)

hours age -0.01732222 0.31904493 raven 0.27639488 pbnl 0.51697292

- Number of SDs by which PBEN will change as each of the predictors changes by 1 SD (all other predictors being equal!).
- Directly comparable;
- Better insight into weight of each variable.

CONFIDENCE INTERVALS

R Output

> confint(englishIVIR)						
	2.5 %	97.5 %				
(Intercept)	-368.0773784	-183.347680				
hours	-4.8464871	4.104587				
age	0.5683334	1.954122				
raven	0.3180700	2.226378				
pbnl	0.9305210	1.923057				

aufint/augliah MD

Interpretation

- The confidence bands for each of the predictors is small, except for hours.
- Hours crosses 0: sometimes the relationship is positive, sometimes negative.

• BAD.

COMPARING MODELS

R Output

> anova(englishSR, englishMR) Analysis of Variance Table

 Model 1: pben ~ hours

 Model 2: pben ~ hours + age + raven + pbnl

 Res.Df
 RSS
 Df
 Sum of Sq
 F
 Pr(>F)

 1
 70
 82790
 2
 67
 43739
 3
 39051
 19.94
 2.401e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Interpretation

EnglishMR is a significantly better fit to the data compared to EnglishSR, F(3, 67) = 19.94, p < 0.001.

DIAGNOSTICS

R Output

> english\$standardized.residuals<-rstandard(englishMR)

> english\$large.residual<-english\$standardized.residuals > 2 | english\$standardized.residuals < -2</p>

sum(english\$large.residual)

[1] 3

> english[english\$large.residual, c("pben", "age", "raven", "pbnl", "hours", "standardized.residuals")]

	pben	age	raven	pbnl	hours	standardized.residual
1	149	128	39	110	4	2.389620
48	151	117	41	121	2	2.285620
56	92	109	27	99	0	2.198725

- Sample = 72
- 95% of residuals should be within +/- 2 (SD).
- 5% should be outside.
- 5% of 72 = 3.6
- 3 or 4 outliers
- We have 3.
- Fine.

DIAGNOSTICS

R Output

> english\$cooks<-cooks.distance(englishMR)							
> english\$leverage<-hatvalues(englishMR)							
> english\$covariance<-covratio(englishMR)							
> english[english\$large.residual, c("cooks", "leverage", "covariance"							
	cooks	leverage	covariance				
1	0.11501253	0.09149260	0.7601336				
48	0.12934210	0.11015771	0.8073542				
56	0.05533664	0.05413405	0.7837935				

- Cook's distance should be < 1.
- Leverage should be < 2(k + 1/n);
 - 2(5/72) = 0.14
- Covariance ratio
 - $CVR_i < 1 + [3(k + 1)/n]$
 - $CVR_i < 1 + [3(4 + 1)/72] = 1.08$
 - $CVR_i > 1 [3(k + 1)/n]$
 - $CVR_i > 1 [3(4 + 1)/72] = 0.79$
- #1 is lowish, but see Cook's distance.

INDEPENDENCE

R Output

> dwt(englishMR)lag Autocorrelation D-W Statistic p-value1 0.07124528 1.778073 0.228

Alternative hypothesis: rho != 0

Interpretation

- Durbin-Watson tests assumption of independent errors.
- Should be close to 2 and not <1 or >3.

• Fine at 1.78.

NO MULTICOLLINEARITY

R Output

> vif(englishM	R)						
hours	age	raven	pbnl				
1.451289	1.020795	1.427768	1.074327				
> 1/vif(englishMR)							
hours	age	raven	pbnl				
0.6890425	0.9796286	0.7003941	0.9308155				

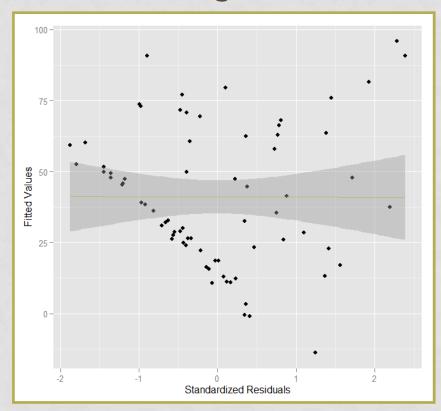
> mean(vif(englishMR))
[1] 1.243545

- VIF to assess multicollinearity.
- Tolerance = 1/VIF.
- Largest VIF > 10 means problem.
- Mean VIF much > 1 means problem.
- Tolerance < 0.2 means potential problem.
- All fine.

RESIDUALS

R Output

> english\$fitted <- englishMR\$fitted.values

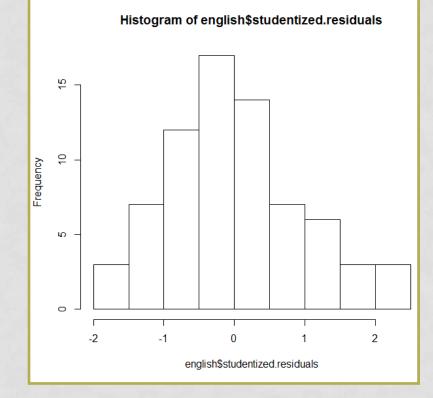

> scatterResiduals<-ggplot(english, aes(standardized.residuals, fitted))

> scatterResiduals<-scatterResiduals + geom_point() +</pre>

geom_smooth(method="lm", colour="darkkhaki") + labs(x="Standardized Residuals", y="Fitted Values")

> scatterResiduals

Visualizing residuals



RESIDUALS

R Output

> hist(english\$studentized.residuals)

Visualizing residuals

INTERPRETING RESIDUALS

- Some heteroscedascity and non-linearity.
- Distribution of residuals seems normal.

CONCLUSION

- Assumption of homoscedascity and linearity of residuals violated.
- Findings cannot be generalized beyond sample (yet).
- Options:
 - Logistic regression
 - Robust regression

CONCLUSION

- Hours of education does not predict PBEN score.
- Rather, a combination of age, intelligence and language aptitude does.

REFERENCES

- Field, A. et al (2012). *Discovering statistics using R.* London: Sage Publications Ltd.
- Moore, D. S. et al (2012). Introduction to the practice of statistics. New York: W. H. Freeman and Company.
- Schiff-Myers, N., Klein, H. (1985). Some phonological characteristics of the speech of normal-hearing children of Deaf parents. *Journal of Speech and Hearing Research*, 28(4), 466-474.
- Valkenburg, P. et al. (2013). Developing and validating the perceived parental media mediation scale: A self-determination perspective. *Human Communication Research*, *39.* 445-469.