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Introduction

Informally...

» A frequentist is a person whose long-run ambition is to be
wrong 5% of the time.

» A Bayesian is one who, vaguely expecting a horse, and
catching a glimpse of a donkey, believes he has seen a mule.
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Introduction

Why should you (not) listen to this lecture?

— Probably you will not do any Bayesian analysis: when you
want to publish your results you (typically) have to use ‘the
standard’ frequentist statistics.

+ But, maybe you will: Bayesian ideas are becoming more and
more popular.

+ By contrasting with the Bayesian approach you can better
understand the frequentist approach.

+ (Intellectual) curiosity.

—+ It's fun: this is a subject on which lots of disagreement is
going on.
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Introduction

Statistical Inference

In most cases, we use statistics for inference: given a finite sample
from a larger, potentially infinite, population we infer certain
properties of the population.

» Height of people in a certain population based on a randomly
selected group of individuals from the population.
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Introduction

Statistical Inference

In most cases, we use statistics for inference: given a finite sample
from a larger, potentially infinite, population we infer certain
properties of the population.

» Height of people in a certain population based on a randomly
selected group of individuals from the population.

» Ratio of defective memory modules produced on a production
line, based on the quality control results on the modules
produced so far.

> Average length of utterances in child-directed speech, and its
relation with children’s proficiency of the language

In most cases, we use a point estimate, but we also require a
measure of the reliability of this estimate.
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A hypothetical example for iference

Throughout this talk we will use a hypothetical example:

>

We have a group of extraterrestrials ( ), visiting
Groningen.

Among other things, we'd like to know the mean height of a

LGM. (maybe just curiosity, maybe we have a business idea).

We managed to measure height of all 10 LGM we know, the
data is as follows (in centimeters):
122 122 116 134 113 114 113 110 123 130

No one knows the population mean in their planet.

Interestingly, they know that a reliable estimate of the
standard deviation of the complete LGM population is 8cm.
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Introduction

Inference for unknown mean: confidence intervals

» Sample mean is 118.1 which is our best estimate of the
population mean.

» Using our estimate, we calculate a confidence interval

n—t X i, w+t X 2
vn vn
where t is the critical value of interest from the t-distribution.
» Here is how to calculate 95% confidence interval in R
> mean(lgm) + qt(.025,
[1] 112.3771

> mean(lgm) + qt(.925,
[1] 122.0813

df=9) * (8/sqrt(10))

df=9) * (8/sqrt(10))
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Another look at the confidence intervals
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Population mean is a value that is fixed,
unknown, and unknowable.

We calculate the 95% confidence interval
using the only sample mean we have.

If we had many similar samples from the
same population, and calculate the same
interval for each, we would have 95% of
them including the population mean.

As a result, we say that we are 95%
confident that the interval we calculated
contains the sample mean.
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Another look at the confidence intervals

F-e--1

. » Population mean is a value that is fixed,
k- unknown, and unknowable.
F--es-d : ;
I--é o » We calculate the 95% confidence interval
L : { using the only sample mean we have.
- ei-
b » If we had many similar samples from the
I-—;*--i same population, and calculate the same
L _5,._ _+ interval for each, we would have 95% of
i § { them including the population mean.
- -
Lo » As a result, we say that we are 95%
b confident that the interval we calculated
: contains the sample mean.

Does it mean: ‘with 0.95 probability the population mean is in
the interval we calculated’?
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Introduction

Outline
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Probability theory and probabilities

Probability theory: all you need to know

Three axioms of probability (also called, Kolmogorov axioms).
P(E) > 0 Probability of any event E is a positive real number.
P(Q) =1 Sum of the probabilities of all outcomes is 1.

P(UE;) = >_ P(E;) For disjoint events E;, the probability that any

of the events happens is the sum of the probabilities
individual events.
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Probability theory: all you need to know

Three axioms of probability (also called, Kolmogorov axioms).
P(E) > 0 Probability of any event E is a positive real number.
P(Q) =1 Sum of the probabilities of all outcomes is 1.

P(UE;) = >_ P(E;) For disjoint events E;, the probability that any

of the events happens is the sum of the probabilities
individual events.

But probability theory does not tell how to determine probability
of an event, say the probability of ‘heads’ on a coin flip.
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Probability theory and probabilities

Where do probabilities come from?

There are many ways of assigning probabilities events. However,
we are interested in two:

Frequentist Probabilities are Long-run frequencies. Probability of
an event (e.g., coin-flip resulting in ‘heads’) is
determined by its long-run frequency.

Bayesian Probabilities are degrees of belief (probability you
assigned to a coin-flip experiment is your belief that
it is a fair coin).
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Bayes’ theorem

Bayes' theorem

> Bayes' theorem gives us a way to calculate conditional
probabilities.
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Bayes’ theorem

Bayes' theorem

P(H)P(DatalH)
P(Data)

P(H|Data) =

» Bayes' theorem gives us a way to calculate conditional
probabilities.

» Bayes' theorem follows from axioms of probability: there is
nothing controversial about it.

> ... but in Bayesian inference, we use it for calculating
probability of a hypothesis, H,
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Bayes’ theorem

Bayes' theorem

P(0)P(Data|0)

P(0|Data) = P(Data)

» Bayes' theorem gives us a way to calculate conditional
probabilities.

» Bayes' theorem follows from axioms of probability: there is
nothing controversial about it.

> ... but in Bayesian inference, we use it for calculating
probability of a hypothesis, H,

> ... or a certain parameter of a population, 0, given a sample
(Data).
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Bayes’ theorem

Bayes' theorem: some terminology

p(6)p(Datald)
p(6|Data) = ~ p(Data)
p(0|Data) :  posterior
p(Datal®) : likelihood (L(6))
p(0) : prior
p(Data) : Marginal probability of data
> P(Datal0)P(0)
or
| p(Datal0)p(0)d0
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Bayes’ theorem

Bayes' theorem: an example

» We have a particular medical test, T, for diagnosing a
condition, A. T has the following properties:
P(T*|A) =0.99 and P(T*|not A) = 0.02.
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Bayes’ theorem

Bayes' theorem: an example

» We have a particular medical test, T, for diagnosing a
condition, A. T has the following properties:
P(T*|A) =0.99 and P(T*|not A) = 0.02.

» A patient had a positive T result. Can you tell the probability
that he has the condition A, P(A|T+)?

» Not yet, we need one more probability: P(A). Let's assume
that P(A) = 0.0002.
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Prior knowledge is important.
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Bayesian inference

Infering mean height of LGM: the/a Bayesian way

> We start with a °
Gaussian prior
x ~ N(100,100)
g L \77»7_“ T T T \‘;7‘77\
60 80 100 120 140
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Infering mean height of LGM: the/a Bayesian way

» We start with a °
Gaussian prior
x ~ N(100,100) )
» We observe the data. s
Likelihood is
N(x,0%/n) =
N(118.1,6.4). 8
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Bayesian inference

Infering mean height of LGM: the/a Bayesian way

prior
— likelihood
—— posteriror

0.15

» We start with a
Gaussian prior
x ~ N(100,100)

» We observe the data.
Likelihood is
N(x,0%/n) =
N(118.1,6.4).

» Posterior is again
normal ]
N(117.01,6.02).

0.10
1

0.05
!

0.00
1
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Bayesian inference

Infering mean height of LGM: calculations

Population N(u, o?)

Prior N(m,s?)
Likelihood N(x,02/n)
Posterior N(m’, (s")?)
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Bayesian inference

Infering mean height of LGM: calculations

Population N(u, 6?)
Prior N(m,s?)
Likelihood N(x,02/n)
Posterior N(m’, (s")?)
() — cr22 x s°
02 + ns?
, 1/s2
mo= n/02+1/52m
n/o?

n/o2 + 1/52X
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Bayesian inference

Infering mean height of LGM: calculations

Population N(u, 0?)
. 2 2
Prior N(m, s?) (s')? = % =6.02
Likelihood N(x, 02/n) 8 +1?>§10
. 1/8
Posterior N(m’, (s")?) m' = mloo
10/82
—  118.1
= Oxs "10/87 +1/102
o
 n/o2+1/s2
n/c?

n/o2 + 1/52X
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Bayesian inference

Infering mean height of LGM: calculations

Population N(u, 6?)
: 2 2
Prior N(m, s?) (s)? = 28 x 10 = 6.02
Likelihood N(X,02/n) 8 +1(/)§10
: 1/8
Post N(m’, = 1
osterior N(m’, (s")?) m 10/82 + 1/102 00
10,82
——118.1
(' — 0° X s Tlo/e £ 1/10°
02 + ns? = 117.01
m/ = 71/52 m
~ n/o2+4+1/s2
njo? » Our posterior is N(117.01, 6.02), a
mx normal distribution with mean

117.01cm, and variance 6.02.
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Bayesian inference

... but, where is my confidence inteval or p-value?

» Bayesian posterior contains all the information you need:

» m’: gives expected value you belief should be centered on.
» s’: gives the variability of your estimate.

» If you like, analogous to confidence intervals, you can
calculate the credible intervals.

» 95% credible interval for our LGM example:

> gqnorm (0.025, 117.01, sqrt(6.02))

[1] 112.20
> gqnorm (0.925, 117.01, sqrt(6.02))
[1] 120.54

(our frequentist confidence interval was [112.38,122.08])

» Note that we can now say ‘with .95 probability population
mean is in range [112.20,120.54]'.
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Effect of different priors

prior & likelihood posterior
89 ---- N(100,20) 84 --—- N(117,86.3)
,,,,,,, N(100,5) = N(114,5.1)
1 (flat prior, not visible) N(118.1,6.4)
likelihood
° T T T T T ° T T T T T
60 80 100 120 140 60 80 100 120 140
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Priors

How do we choose the priors?

» Quantifying expert opinion:

» Pick the prior mean where expert’s belief is centered on.

» Pick the variance such that the range covers reasonable values
of the expected mean, or consider equivalent sample size for
your prior. If you want your prior to be equivalent to a sample
of size n, your prior variance should be ¢2/n.

» Previous research results. You can use previously reported
research results as your prior. Bayesian inference can proceed
incrementally.

» Non-informative, flat priors. If there is no reasonable way to
form a prior, one can use a flat prior. These often result in
similar point estimates as frequentist estimates.
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Priors

Prior distributions and computation

Bayesian calculations can be difficult. There are two major
methods in practice:

» When possible, use conjugate priors, which allow easy
calculations. For example, if our likelihood is normal, the
conjugate prior is also normal. That's why we could easily
compute the posterior distribution for mean LGM height.

» When we cannot compute the solution analytically, we can use
methods such as Markov Chain Monte Carlo (MCMC)
sampling.
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Hypothesis testing

How about hypohesis testing?

» Traditional hypothesis testing is based on specifying a null
hypothesis, and rejecting it on the basis of evidence.

» The Bayesian approach is to use posterior odds:

p(Hy|Data)
P(Hp|Data)

gives you ‘which hypothesis to bet for'.
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Summary & comparison

Summary

» Bayesian statistics is another, mathematically more principled,
approach to statistical inference.
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probabilities are degreed of belief (as opposed to long-run
relative frequencies).
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» Bayesian statistics is another, mathematically more principled,
approach to statistical inference.
» The main difference is about interpretation of probability:

probabilities are degreed of belief (as opposed to long-run
relative frequencies).

» Bayesian inference is based on observed data P(6|Data), not
based on unobserved data (as in frequentist inference,
P(Datal0))
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Summary

» Bayesian statistics is another, mathematically more principled,
approach to statistical inference.

» The main difference is about interpretation of probability:
probabilities are degreed of belief (as opposed to long-run
relative frequencies).

» Bayesian inference is based on observed data P(6|Data), not
based on unobserved data (as in frequentist inference,
P(Datal0))

» Bayesian statistics incorporate prior knowledge.

» Posterior probability includes all information you need about
the quantity you are interested in after observing the data.

» The computation can be difficult, but with new methods and
technology, it is far more feasible now.
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