

Corpus Cross Entropy

Peter Nabende Rahmad Mahendra

Outline

- Entropy
- Cross Entropy
- Machine Transliteration
- Algorithms and Models
- Corpus Cross Entropy
- References

Entropy (1)

- Measurement in information theory
- Randomness, uncertainty
- Expected value function of information content in random variable
- Based on [Shannon, 1948]

Entropy (2)

- Suppose a set of events whose probabilities of occurrence p1, p2, p3, ..., pn
- *H*(p1, p2, p3, ..., pn) that satisfying following properties
 - 1. H should be continuous in the $p_{\scriptscriptstyle 1}$
 - 2. If all the p_i are equal, $p_i = 1/n$, then *H* should be a monotonic increasing function of n
 - 3. If a choice be broken down into two successive choices, the original *H* should be the weighted sum of the individual values of *H*.

Entropy (3)

$$H(x) = -K \sum_{i=1}^{n} p(x_i) \log p(x_i)$$

K is positive constant

Entropy: Language Model Case (1)

- Suppose sequence of tokens, i.e. words $(w_1, w_2, w_3, \ldots, w_n)$ we have entropy $H(w_1, w_2, ..., w_n) = -\sum_{W_i^n \in L} p(W_i^n) \log p(W_i^n)$
- For each word, entropy rate

$$\frac{1}{n} \cdot H(w_1, w_2, ..., w_n) = -\frac{1}{n} \cdot \sum_{W_i^n \in L} p(W_i^n) \log p(W_i^n)$$

Entropy: Language Model Case (2)

 If a language is stationary and ergodic, the Shannon-McMillan-Breiman theorem

$$\frac{1}{n} \cdot H(w_1, w_2, ..., w_n) = -\frac{1}{n} \cdot \sum_{W_i^n \in L} \log p(W_i^n)$$

- A language is stationary if the probability distribution of the words do not change with time.
- A language is ergodic if its statistical properties can be deduced from a single, sufficiently long sequence of words

university of groningen

Cross Entropy (1)

- Comparing probability distribution.
- Kullback-Leibler information measure, Relative entropy
- Cross entropy of two probability distribution p and m for a random variable X

$$H(p,m) = -K \cdot \sum_{i} p(x_i) \cdot \log m(x_i)$$

Cross Entropy (2)

Not symmetric function

 $H(p,m) \neq H(m,p)$

- The cross entropy H(p, m) is a upper bound on true entropy p
 H(p,m) ≥ H(p)
- Used to compare approximate model
 - Between two model and , one whose lower cross entropy value considered as more accurate model

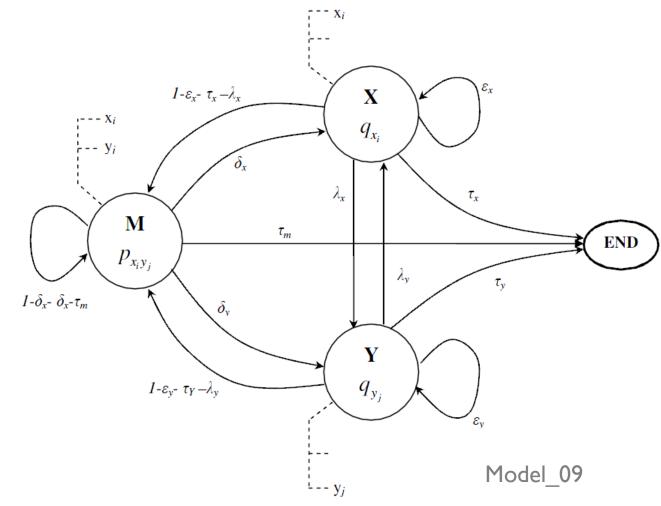
 university of groningen

Machine Transliteration

 Translating names and/or technical term across languages with different alphabets and sound inventories

P.Nabende examine data Russian – English

- барбадос
 barbados
- ∘ луксор luxor
- ∘ линкольн lincoln



Algorithms and Models (1)

- Hidden Markov Model
 - Forward
 - Viterbi
- Model_06 and Model_09

Algorithms and Models (2)

Algorithms and Models (3)

- Input of algorithm: two observation sequences (s,t)
- Output of algorithm: similarity score

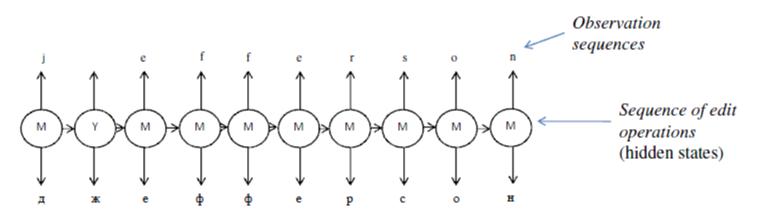


Fig.1: Illustration of alignment for an english name "jefferson" and its Russian transliteration following the pair-HMM concept

Corpus Cross Entropy (1)

• Given a corpus consisting *n* pair English-Russian data with similarity score, suppose as token Ci

(C1, C2, C3, ..., Cn)

 computing cross entropy across the algorithm and models

$$H_c(m) = -\frac{1}{n} \cdot \sum_i \log m(c_i)$$

Corpus Cross Entropy (2)

Result of Computing Corpus Cross Entropy for two algorithms, two models of 743 pairs English - Russian

	Forward	Viterbi
Model_06	6.04955661824	21.73845715804
Model_09	12.89473170688	19.65702544689

Corpus Cross Entropy (3)

- Interpretation
 - Forward algorithm is more appropriate to be used
 - 2. Model_06 is considered more accurate (in case of Forward algorithm)

References

 P.Nabende (2009) Cross Entropy for Measuring Quality in Models http://www.let.rug.nl/~nerbonne/teach/rema-stats-meth-seminar/presentations/Nabende_x_entropy_model_accuracy

<u>_2009.pdf</u>

- C.E. Shannon (1948) "A Mathematical Theory of Communication". Bell System Technical Journal
- D.Jurafsky & J.Martin (2009) Speech and Language Processing.

university of groningen