Regression Analysis on Levenshtein-Pointwise Mutual Information Segment Distances Across Languages and Acoustic Distances

Eliza Margaretha Martijn Wieling John Nerbonne

Rijksuniversiteit Groningen

Outline

Overview
Techniques
Data
Analysis
Discussion
Summary

Overview

- Compare phonetic segment distances
 Dutch, German, Bulgarian
- Compare Levenshtein-Pointwise Mutual Information (PMI) distances to acoustic distances
- Regression analysis
 - Correlation
 - Prediction power

Techniques: Levenshtein-PMI (1/3)

Segment Distance

- How often segment x is aligned with segment y
- Levenshtein
 - Insertion: a segment with a gap
 - Deletion: a gap with a segment
 - Substitution: 2 segment

Techniques: Levenshtein-PMI (2/3)

• Pointwise Mutual Information (Church and Hanks, 1995)

$$PMI(x,y) = \log_2\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

• Wieling, et al. (2009)

- p(x,y) is the number of the x and y occurrences at the same position in 2 aligned strings of X and y, divided by the total number of aligned segments
- p(x) or p(y) the number of the occurrences of x or y divided by the total number of segment occurrences

Techniques: Levenshtein-PMI (2/3)

- Training Wieling, et al. (2009)
 - Align string with Levenshtein algorithm (w/o vocal-consonant)
 - Compute PMI values and transform (subtract from 0 + max value)
 - 3. Apply Levenshtein to PMIsegment distances
 - 4. Repeat 2 and 3 till convergence is reached

	α	ə	ε
α	0	2331	1880
ə	2331	0	64905
8	1880	64905	0

Techniques: Formant Measurements (1/3)

- Sowel quality (McArthur, 1998)
 - the property that makes vowels different, e.g. /*ir*/ as in sheep from /*i*/ as in ship
 - determined by the position of the vocal tracts during pronunciation

• Formants

- measure vowel quality by means of acoustic signals
- specify the energy concentration positions in the acoustic signals, i.e. the lowest resonance frequencies (Peterson & Barney, 1952)

Techniques: Formant Measurements (2/3)

- Formants: darker bands
 - 2 first formants are the most distinguishing
 - 3rd formants and lip position
- /i/ and /u/ has similar first formants but the second formant of /i/ is much higher than that of /u/

Picture from (Leinonen, 2010)

Techniques: Formant Measurements (3/3)

• Acquiring acoustic distances

- Compute Euclidean distances of formant values between vowel pairs (Wieling, et al., 2007)
- Normalizing non-linguistic speakerdependent differences
 - Pitch, gender, shape & size of vocal tracts
 - transforms Hertz frequency to the Bark or the Mel scales

Techniques: Mantel Test (1/2)

• Triangle inequality

- Dependent: D(a,ε) is dependent to D(a, a) and D(a,ε)
 - $\circ D(a,\epsilon) < D(a,\partial) + D(\partial,\epsilon)$
 - Acoustic distance
- Independent
 Levenshtein PMI
- Mantel test
 - Significance Test of a Correlation Coefficient of Distance Matrices

Techniques: Mantel Test (2/2)

- Random permutation test
- H Null = No relation between 2 matrices
 - R should be equally likely to be larger or smaller
- Steps
 - 1. Permutate rows and columns of one of the matrices randomly
 - 2. Compute correlation between the permutated matrix and the other matrix
 - 3. Repeat 1 and 2
- Observation value:
 - Add 1 for every r(PD1,D2) > r(D1,D2)
 - Divided by number of repetition

Dataset (1/5)

Language	Locations	Words	Segment Types
Dutch	424	562	82
German	186	196	78
Bulgarian	197	152	67

- Dutch: Goeman-Taeldean-Van Reenen-Project
- German : Kleiner Deutscher Lautatlas project
- **Bulgarian**: students' theses at the University of Sofia, published monographs, dictionaries, and the archive of the Ideographic Dictionary of Bulgarian Dialects (Prokić, et al., 2009)

Dataset (2/5)

Language Pair	Shared Types	Segment Alignments	Vowel Alignments	Consonant Alignments
Dutch and Bulgarian	43	235	92	143
Dutch and German	71	870	261	609

Dataset (3/5)

Normal Q-Q Plot of NL

5.000

5.000

Dataset (4/5)

Dataset (5/5)

- Acoustic data was obtained from Pols, et al. (1973) and Van Nierop, et al. (1973),
 - three first formants
 - 50 male and 25 female Dutch speakers
 - 36 acoustic vowel alignments
 - All alignments appear in Levenshthein-PMI Dutch matrix

Analysis: Lev-PMI Distance Across Languages (1/5)

• Regression analysis setup

- Variables
 - Dutch (independent/explanatory) and Bulgarian (dependent/response)
 - Dutch and German
- Cases
 - Segment alignments
- Values
 - Levenshtein-PMI distance

Analysis: Lev-PMI Across Languages (2/5)

Analysis: Lev-PMI Across Languages (3/5)

Analysis: Lev-PMI Across Languages (4/5)

Language Pair	Alignment Sets	Pearson Correlation	Effect size (r ²)
Dutch and	All	0,336	0.113
Bulgarian	Vowel	0,418	0.178
	Consonant	0,339	0.115
Dutch and	All	0,630	0,397
German	Vowel	0,620	0.384
	Consonant	0.587	0.345

Analysis: Lev-PMI Across Languages (5/5)

• Computing regression line

- y = 1586, 562 + 0,300x
- T ratio 5,454 (p < 0,001)

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Siq.
1	(Constant)	1568,562	128,322		12,224	,000
	NL	,300	,055	,336	5,454	,000

Coefficients^a

a. Dependent Variable: BUL

Analysis: Example (1/2)

• How does the prediction work?

- Lev-PMI distance between a and ε in Dutch, x = 1556
- Predicted a- ε distance in Bulgarian: • $\hat{y} = 1586.562 + 0.300 (1556) = 2053.362$

Model Summary^b

Mode	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,336ª	,113	,109	639,39919

Descriptive Statistics

	Mean	Std. Deviation	N
BUL	2230,4298	677,53592	235
NL	2207,7872	760,44125	235

a. Predictors: (Constant), NL

b. Dependent Variable: BUL

Analysis: Example (2/2)

$$\mathsf{SE}_{\hat{y}} = s \cdot \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum_i^n (x_i - \overline{x})^2}}$$

•
$$SE_{\hat{y}} = 639.4 \times \sqrt{\frac{1}{235} + \frac{(1556 - 2207.8)^2}{578270.9}} = 549.6$$

• $t \text{ for } (df = 200) = 1.97 (\alpha = 0.05)$

- Confidence Interval 95% = $\hat{y} \pm t \times SE_{\hat{y}} = 2053.362 \pm 1.97 \times 549.6 = 2053.362 \pm 1083$
- With 95% certainty, mean of a-ε distance in Bulgarian given the distance in Dutch = 1556, lies in the interval (970,3136).
- Real distance = 1675

Analysis: Lev-PMI and Acoustic Distances (1/3)

• Response Variable

- Lev-PMI distance for Dutch segments
- Explanatory variables (acoustic distance variations)
 - Hertz: raw hertz measurements of formants
 - Bark: hertz values transformed to Bark scale
 - Mel: hertz values transformed to Mel scale
 - Z-score
 - hertz values transformed to Z-scores per speaker, normalizing over all the vowels for each speaker
 - average the Z-scores per vowel of all speakers

Analysis: Lev-PMI and Acoustic Distances (2/3)

Acoustic variation	Number of first formants	Pearson Correlation	Effect Size (r ²)	Significance
Hortz	2	0.481	23 %	0.003
	3	0.426	18 %	0.010
7	2	0.720	52 %	0.000
Z-SCOLE	3	0.640	41 %	0.000
ParkSoalo	2	0.616	38 %	0.000
DUIK SCUIE	3	0.517	27 %	0.001
	2	0.603	36 %	0.000
Mei Scale	3	0.507	26 %	0.002

Analysis: Lev-PMI and Acoustic Distances (3/3)

- Mantel test with 9999 replicates
- H0 = No relation
 between Lev-PMI
 distance with
 Acoustic distance
- Positive observations shows positive relationships

Acoustic variation	Observation value	Significance (p-value)
Hertz 2	0.168	0.0134
Hertz 3	0.132	0.035
Z2	0.410	1e-04
Z3	0.317	3e-04
Bark 2	0.303	2e-04
Bark 3	0.206	0.0027
Mel 2	0.286	2e-04
Mel 3	0.195	0.0036

Discussion

- Why is the correlation between Dutch and Bulgarian smaller than that between Dutch and German?
- Why do Z-scores yield better results than other variations (Hertz, Bark, Mel)?
- How are the relationships between Levenshtein-PMI distances and acoustic distances of other languages?

Summary

- Our results show that Levenshtein-PMI distances of Dutch are able to predict those of Bulgarian and German.
- Prediction of languages in the same category / with similar characteristics (Dutch-German) is better than those with different characteristics (Dutch-Bulgarian).
- Vowel quality as represented by acoustic distances correlate reasonably highly with Levenshtein-PMI distances, particularly in our Dutch case, the former can predict up to 52% of the latter.