Regression Analysis on LevenshteinPointwise Mutual Information Segment Distances Across Languages and Acoustic Distances

Eliza Margaretha Martijn Wieling
John Nerbonne

Rijksuniversiteit Groningen

Outline

- Overview
- Techniques
- Data
- Analysis
o Discussion
- Summary

Overview

- Compare phonetic segment distances
- Dutch, German, Bulgarian
- Compare Levenshtein-Pointwise Mutual Information (PMI) distances to acoustic distances
- Regression analysis
- Correlation
- Prediction power

Techniques: Levenshtein-PMI (1/3)

- Segment Distance
- How often segment x is aligned with segment y
- Levenshtein
- Insertion: a segment with a gap
- Deletion: a gap with a segment
- Substitution: 2 segment

Techniques: Levenshtein-PMI (2/3)

- Pointwise Mutual Information (Church and Hanks, 1995)

$$
P M I(x, y)=\log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)
$$

o Wieling, et al. (2009)

- $p(x, y)$ is the number of the x and y occurrences at the same position in 2 aligned strings of X and y, divided by the total number of aligned segments
- $p(x)$ or $p(y)$ the number of the occurrences of x or y divided by the total number of segment occurrences

Techniques: Levenshtein-PMI (2/3)

- Training Wieling, et al. (2009)

1. Align string with Levenshtein algorithm (w/o vocal-consonant)
2. Compute PMI values and transform (subtract from 0 + max value)

	α	θ	ε
α	0	2331	1880
θ	2331	0	64905
ε	1880	64905	0

3. Apply Levenshtein to PMIsegment distances
4. Repeat 2 and 3 till convergence is reached

Techniques: Formant Measurements (1/3)

(8) Vowel quality (McArthur, 1998)

- the property that makes vowels different, e.g. /i:/ as in sheep from /i/ as in ship
- determined by the position of the vocal tracts during pronunciation
- Formants
- measure vowel quality by means of acoustic signals
- specify the energy concentration positions in the acoustic signals, i.e. the lowest resonance frequencies (Peterson \& Barney, 1952)

Techniques: Formant Measurements (2/3)

e Formants: darker bands

- 2 first formants are the most distinguishing
- $3^{\text {ra }}$ formants and lip position
- /i/ and /u/ has similar first formants but the second formant of $/ i /$ is much higher than that

Picture from (Leinonen, 2010) of $/ u /$

Techniques: Formant Measurements (3/3)

- Acquiring acoustic distances
- Compute Euclidean distances of formant values between vowel pairs (Wieling, et al., 2007)
- Normalizing non-linguistic speakerdependent differences
- Pitch, gender, shape \& size of vocal tracts
- transforms Hertz frequency to the Bark or the Mel scales

Techniques: Mantel Test (1/2)

- Triangle inequality
- Dependent: $D(\alpha, \varepsilon)$ is dependent to $D(a, a)$ and D (∂, ε)
- $D(a, \varepsilon)<D(a, \partial)+D(\partial, \varepsilon)$
- Acoustic distance
- Independent

o Levenshtein PMI
- Mantel test
- Significance Test of a Correlation Coefficient of Distance Matrices

Techniques: Mantel Test (2/2)

- Random permutation test
- H Null = No relation between 2 matrices
- R should be equally likely to be larger or smaller
- Steps

1. Permutate rows and columns of one of the matrices randomly
2. Compute correlation between the permutated matrix and the other matrix
3. Repeat 1 and 2

- Observation value:
- Add 1 for every r(PD1,D2) >r(D1,D2)
- Divided by number of repetition

Dataset (1/5)

Language	Locations	Words	Segment Types
Dutch	424	562	82
German	186	196	78
Bulgarian	197	152	67

- Dutch: Goeman-Taeldean-Van Reenen-Project
- German : Kleiner Deutscher Lautatlas project
- Bulgarian: students' theses at the University of Sofia, published monographs, dictionaries, and the archive of the Ideographic Dictionary of Bulgarian Dialects (Prokić, et al., 2009)

Dataset (2/5)

Language Pair	Shared Types	Segment Alignments	Vowel Alignments	Consonant Alignments
Dutch and Bulgarian	43	235	92	143
Dutch and German	71	870	261	609

Dataset (3/5)

Normal Q-Q Plot of NL

Normal Q-Q Plot of NL

Normal Q-Q Plot of BUL

Normal Q-Q Plot of DE

Dataset (4/5)

Dataset (5/5)

- Acoustic data was obtained from Pols, et al. (1973) and Van Nierop, et al. (1973),
o three first formants
- 50 male and 25 female Dutch speakers
- 36 acoustic vowel alignments
- All alignments appear in Levenshthein-PMI Dutch matrix

Analysis: Lev-PMI Distance Across Languages (1/5)

- Regression analysis setup
- Variables
- Dutch (independent/explanatory) and Bulgarian (dependent/response)
- Dutch and German
- Cases
- Segment alignments
- Values
- Levenshtein-PMI distance

Analysis: Lev-PMI Across Languages (2/5)

Analysis: Lev-PMI Across Languages (3/5)

Dependent Variable: DE

Analysis: Lev-PMI Across Languages (4/5)

Language Pair	Alignment Sets	Pearson Correlation	$\begin{aligned} & \text { Effect size } \\ & \left(r^{2}\right) \end{aligned}$
Dutch and Bulgarian	All	0,336	0.113
	Vowel	0,418	0.178
	Consonant	0,339	0.115
Dutch and German	All	0,630	0,397
	Vowel	0,620	0.384
	Consonant	0.587	0.345

Analysis: Lev-PMI Across Languages (5/5)

- Computing regression line
- y $=1586,562+0,300 x$
- T ratio 5,454 ($\mathrm{p}<0,001$)

Coefficients ${ }^{\text {¹ }}$

Madel		Ustandardized Coefficients		$\begin{array}{\|c} \begin{array}{c} \text { Standardized } \\ \text { Coeficients } \end{array} \\ \hline \text { Beta } \end{array}$	t	Silu.
		B	Std. Error			
1	(Constant)	1568,562	128,322		12,224	000
	NL	300	055	336	5.454	000

a. Dependent Variable: BUL

Analysis: Example (1/2)

- How does the prediction work?
- Lev-PMI distance between a and ε in Dutch, $x=1556$
- Predicted a-ع distance in Bulgarian:
- $\hat{y}=1586.562+0.300(1556)=2053.362$

Model Summary ${ }^{b}$

$\left.$| Mode
 1 | R | R Square |
| :--- | :--- | ---: | ---: | ---: | | Adjusted R |
| :---: |
| Square |\quad| Std. Error of |
| :---: |
| the Estimate | \right\rvert\,

a. Predictors: (Constant), NL
b. Dependent Variable: BUL

Analysis: Example (2/2)

$\mathrm{SE}_{\hat{y}}=s \cdot \sqrt{\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}}}$

- $S E_{\hat{y}}=639.4 \times \sqrt{\frac{1}{235}+\frac{(1556-2207.8)^{2}}{578270.9}}=549.6$
- t for $(\mathrm{df}=200)=1.97(\alpha=0.05)$
- Confidence Interval $95 \%=\widehat{y} \pm t \times S E_{\hat{y}}=$ $2053.362 \pm 1.97 \times 549.6=2053.362 \pm 1083$
- With 95% certainty, mean of a- ε distance in Bulgarian given the distance in Dutch $=1556$, lies in the interval $(970,3136)$.
- Real distance $=1675$

Analysis: Lev-PMI and Acoustic Distances (1/3)

- Response Variable
- Lev-PMI distance for Dutch segments
o Explanatory variables (acoustic distance variations)
- Hertz: raw hertz measurements of formants
- Bark: hertz values transformed to Bark scale
- Mel: hertz values transformed to Mel scale
- Z-score
o hertz values transformed to Z-scores per speaker, normalizing over all the vowels for each speaker
o average the Z-scores per vowel of all speakers

Analysis: Lev-PMI and Acoustic Distances (2/3)

Acoustic variation	Number of first formants	Pearson Correlation	Effect Size $\left(r^{2}\right)$	Significance
Hertz	2	0.481	23%	0.003
	3	0.426	18%	0.010
Z-score	2	0.720	52%	0.000
	3	0.640	41%	0.000
Bark Scale	2	0.616	38%	0.000
	3	0.517	27%	0.001
Mel Scale	2	0.603	36%	0.000
	3	0.507	26%	0.002

Analysis: Lev-PMI and Acoustic Distances (3/3)

- Mantel test with 9999 replicates
- $\mathrm{HO}=$ No relation between Lev-PMI distance with Acoustic distance
- Positive observations shows positive relationships

Acoustic variation	Observation value	Significance (p-value)
Hertz 2	0.168	0.0134
Hertz 3	0.132	0.035
Z2	0.410	$1 \mathrm{e}-04$
Z3	0.317	$3 \mathrm{e}-04$
Bark 2	0.303	$2 \mathrm{e}-04$
Bark 3	0.206	0.0027
Mel 2	0.286	$2 \mathrm{e}-04$
Mel 3	0.195	0.0036

Discussion

- Why is the correlation between Dutch and Bulgarian smaller than that between Dutch and German?
- Why do Z-scores yield better results than other variations (Hertz, Bark, Mel)?
- How are the relationships between

Levenshtein-PMI distances and acoustic distances of other languages?

Summary

- Our results show that Levenshtein-PMI distances of Dutch are able to predict those of Bulgarian and German.
- Prediction of languages in the same category / with similar characteristics (Dutch-German) is better than those with different characteristics (Dutch-Bulgarian).
- Vowel quality as represented by acoustic distances correlate reasonably highly with Levenshtein-PMI distances, particularly in our Dutch case, the former can predict up to 52% of the latter.

