Emotion recognition and cochlear implants

Christina Fuller, Deniz Baskent, Rolien Free (UMCG – ENT/Audiology)

Dicky Gilbers, Steven Gilbers (RUG – Linguistics)

Outline

Introduction

Cochlear implant Phonetics of emotional speech Recordings of emotional speech

Pitch analyses

Pitch range, mean pitch, modality

Emotion recognition

NH vs. CI

NH and CI recognition patterns

Per speaker

Optimality Theory account

Conclusion

Questions

Independent samples t-test Mann-Whitney U test

Independent samples t-test Mann-Whitney U test

Kruskal-Wallis H Test Mann-Whitney U test

Cochlear implant

Device surgically placed into a deaf patient's cochlea Stimulates cochlear nerves electrically

CI simulation for music

The Beatles – Let It Be

LET IT BE

Phonetics of emotional speech

Arousal and Valence parameters

		Valence		
		Positive	Negative	
Arousal	High	Јоу	Anger	
		Pride	Fear	
	Low	Tenderness	Sadness	
		Relief	Irritation	

Goudbeek & Broersma (2010)

Recordings of emotional speech

Nonce word

[nutohomsepikan]

(satisfying both Korean & Dutch phonotactics)

Audio recordings of 8 actors

- 4 recordings per emotion
- 4 best recognized emotions selected
- 2 best selected for analysis

fear			joy		A HANNER AND A HANNE AND
anger			pride		
sadness	NID.	and the second s	tenderness		
irritation			relief	Sales Sales	Sold P

Pitch analyses

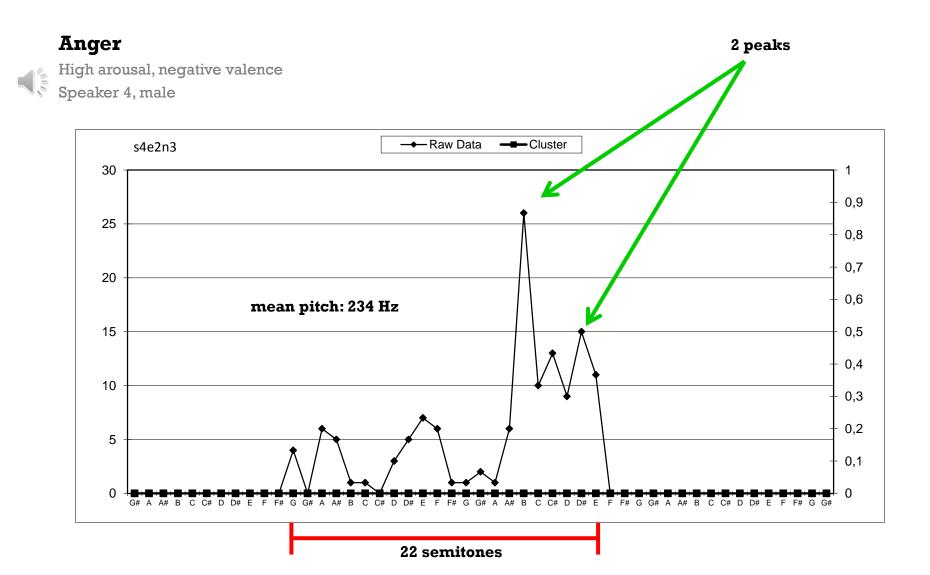
"[A]ngry and happy speech exhibits higher mean pitch [and] a wider pitch range, (...) whereas sad speech exhibits lower mean pitch [and] a narrower pitch range."

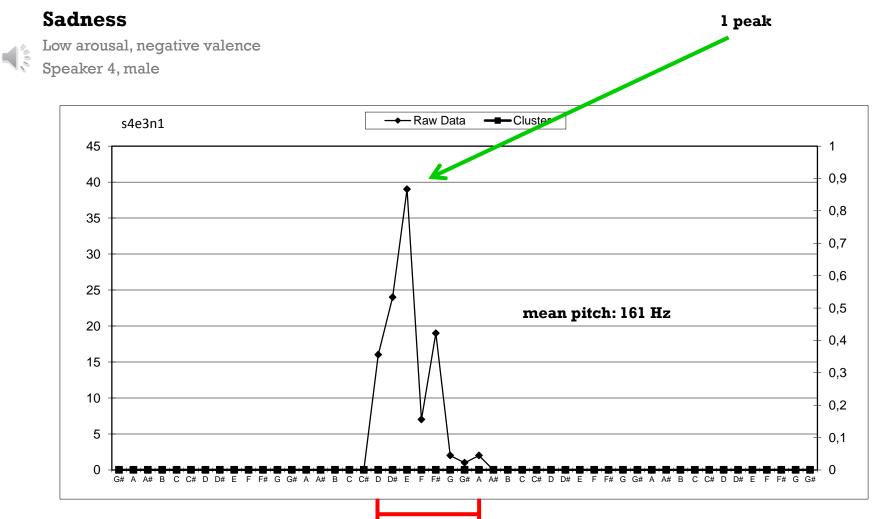
Luo, Fu & Galvin (2007)

Pitch rai	nge Hypothesis:	high arousal	\rightarrow	wider pitch range
Mean pi	tch Hypothesis:	high arousal	\rightarrow	higher mean pitch
Extra var	iable (D. Gilbers, F	Force of Articulation Model)		
Modality	y Hypothesis:	high arousal	\rightarrow	more frequency peaks

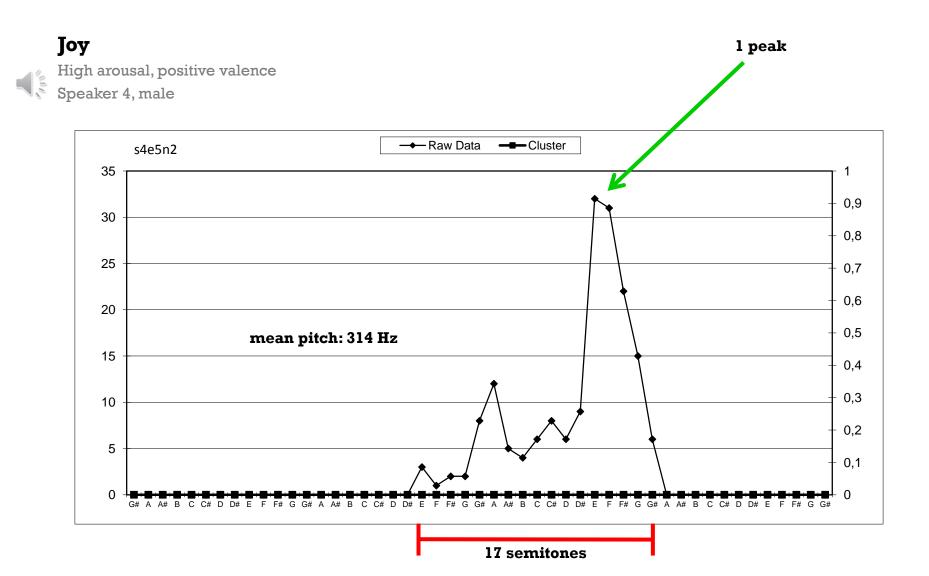
Pitch range

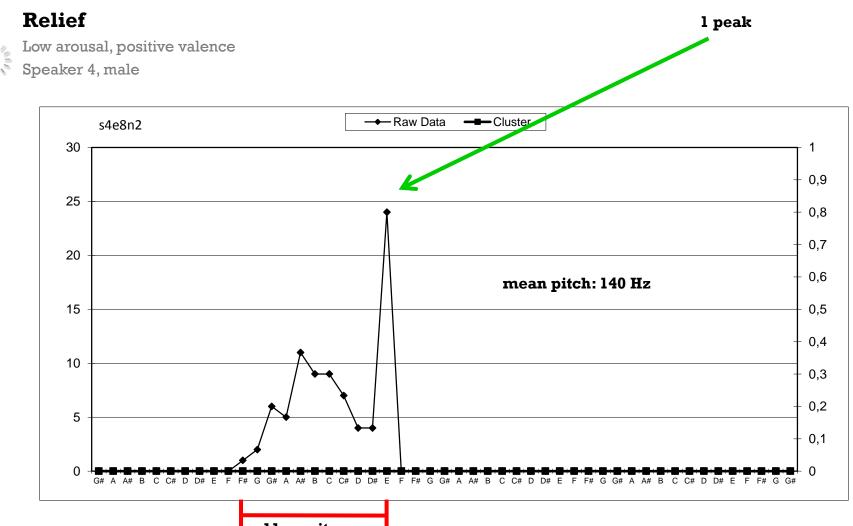
"Post hoc Bonferroni *t* tests showed that the female talker had a significantly larger range of F_0 variation than the male talker (p < .03) for all target emotions."

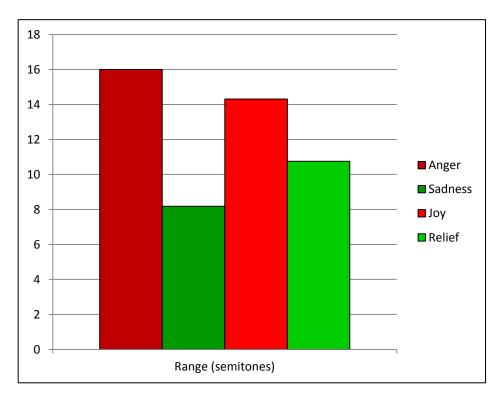

Luo, Fu & Galvin (2007)

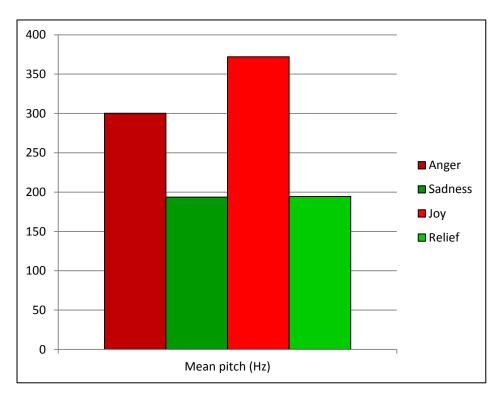

Possibly erroneous conclusion due to measuring pitch range in terms of Hz

A (110Hz) A (220 Hz) A (440 Hz) [1 octave - range = 110 Hz] [1 octave - range = 220 Hz] [1 octave - range = 12 semitones] [1 octave - range = 12 semitones]


 \rightarrow \rightarrow


Frequency range not in Hertz (Hz) but in amount of semitones allows fair comparison between male and female speakers allows fair comparison of pitch range for high and low arousal (assuming the "high arousal → higher mean pitch" hypothesis is true)


8 semitones



11 semitones

	Range (st)	Mean (Hz)	Peaks
Anger	16	300	1,375
Sadness	8,1875	194	1,125
Joy	14,3125	372	1,625
Relief	10,75	194	1,3125

	Range (st)	Mean (Hz)	Peaks
Anger	16	300	1,375
Sadness	8,1875	194	1,125
Јоу	14,3125	372	1,625
Relief	10,75	194	1,3125

	Range (st)	Mean (Hz)	Peaks
Anger	16	300	1,375
Sadness	8,1875	194	1,125
Joy	14,3125	372	1,625
Relief	10,75	194	1,3125

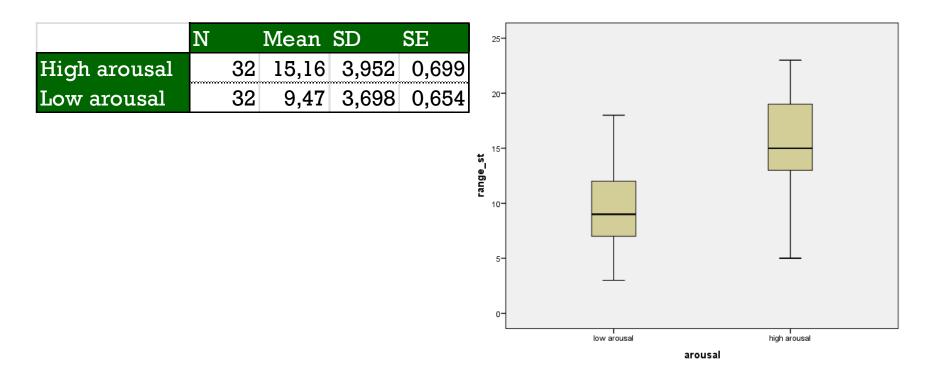
Pitch patterning along the arousal parameter?

Pitch range

- H₀: No difference between high and low arousal emotions for pitch range
- H_1 : Difference between high and low arousal emotions for pitch range, namely wider for high arousal emotions

Mean pitch

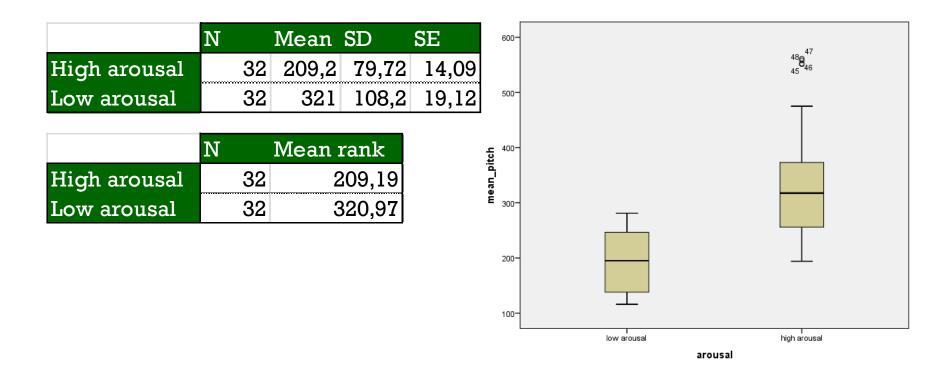
- H_0 : No difference between high and low arousal emotions for mean pitch
- H_1 : Difference between high and low arousal emotions for mean pitch, namely higher for high arousal emotions


Modality

- H₀: No difference between high and low arousal emotions for amount of peaks
- H₁: Difference between high and low arousal emotions for amount of peaks, namely more for high arousal emotions

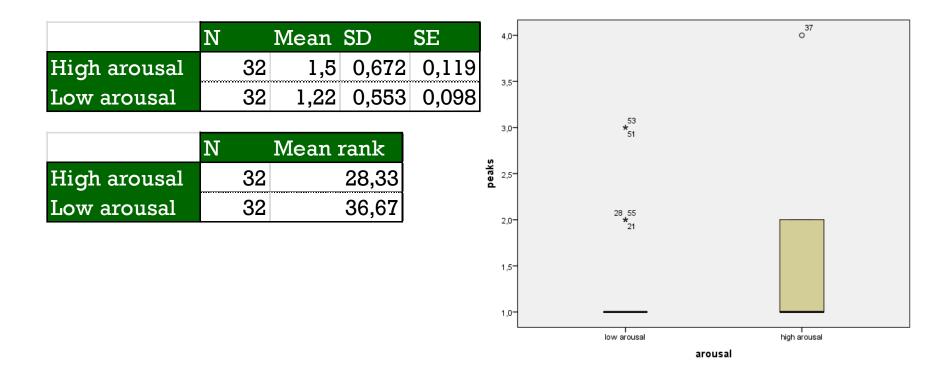
Pitch range

Independent samples t-test


The independent samples t-test found that, on average, high arousal emotions had a wider pitch range in semitones (M=15.16, SE=.699) than low arousal emotions (M=9.47, SE=.654). This difference was significant t(62)=5.944, p < .001. Therefore, H₀ can be safely rejected in favor of H₁.

Mean pitch

Mann-Whitney U-test


The Mann-Whitney U-test found that the mean pitch for high arousal emotions was significantly higher than for low arousal emotions, $U(n_1=32, n_2=32) = 96.5, p < .001$. Therefore, H_0 can be safely rejected in favor of H_1 .

Modality

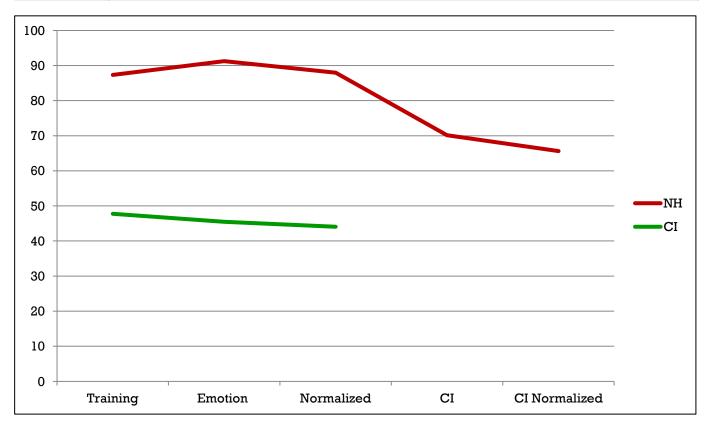
Mann-Whitney U-test

The Mann-Whitney U-test found that the modality for high arousal emotions was significantly higher than for low arousal emotions, $U(n_1=32, n_2=32) = 378.5, p < .05$. Therefore, H_0 can be safely rejected in favor of H_1 .

Emotion recognition

Normal hearing participants (NH)

Training Emotion Emotion (normalized for intensity) CI simulation CI simulation (normalized for intensity)

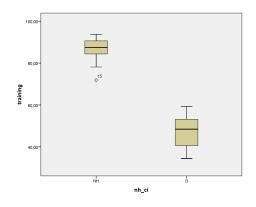

Cochlear implant users (CI)

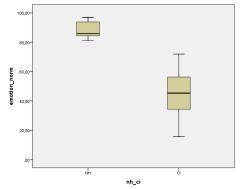
Training Emotion Emotion (normalized for intensity)

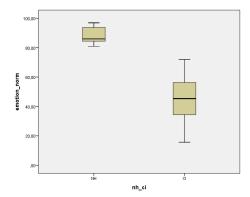
- H₀: No difference between NH and CI regarding emotion recognition
- H₁: Difference between NH and CI regarding emotion recognition

NH vs. CI

	Training	Emotion	Emotion norm.	CI	CI norm.
NH	87,35	91,25	87,96	70,16	65,63
CI	47,75	45,48	44,07		

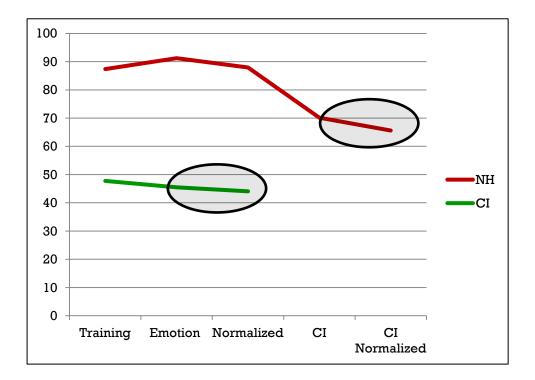

NH vs. CI


'Training', 'emotion', 'emotion normalized' Mann-Whitney U test


The Mann-Whitney U-test found that NH scored significantly better than CI in the 'training' condition, $U(n_1=20, n_2=18) = .000, p < .001.$

The Mann-Whitney U-test found that NH scored significantly better than CI in the 'emotion' condition, $U(n_1=20, n_2=20) = .000, p < .001.$

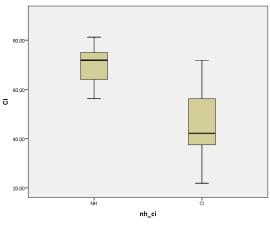
The Mann-Whitney U-test found that NH scored significantly better than CI in the 'emotion normalized' condition, $U(n_1=20, n_2=20) = .000, p < .001$.

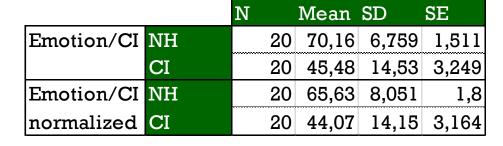


NH's CI simulation vs. CI's emotion

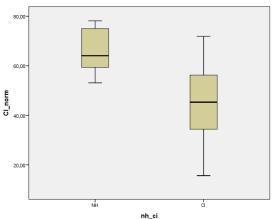
NH's 'CI simulation' & 'CI normalized' Independent samples t-test CI's 'emotion' & 'emotion normalized'

- H_0 : No difference between NH and CI regarding emotion recognition w/ CI sound
- H₁: Difference between NH and CI regarding emotion recognition




NH's CI simulation vs. CI's emotion

NH's 'CI simulation' & 'CI normalized'


CI's 'emotion' & 'emotion normalized'

Independent samples t-test

The independent samples t-test found that, on average, NH performed better at the recognition task with CI sound (M=70.16, SE=1.511) than CI (M=45.48, SE=3.249). This difference was significant t(38)=6.888, p < .001.

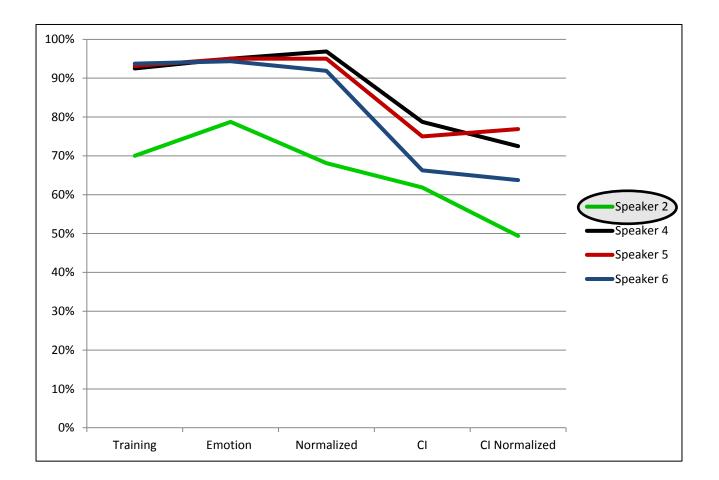
The independent samples t-test found that, on average, NH performed better at the recognition task with normalized CI sound (M=65.63, SE=1.8) than CI (M=44.07, SE=3.164). This difference was significant t(38)=5,921, p < .001.

Comparison between NH and CI recognition patterns (per speaker)

How well were the emotions portrayed by individual actors recognized?

- H₀: No difference between the different speakers regarding the degree to which their emotions are correctly identified
- H₁: Difference between the different speakers regarding the degree to which their emotions are correctly identified

H₀: No difference between NH's and CI's recognition patterns


(i.e. an apparently less well performing speaker's emotions will be recognized worse than the other speakers' by both NH and CI listeners and vice versa)

H₁: Difference between the different speakers regarding the degree to which their emotions are correctly identified

(i.e. an apparently less well performing speaker's emotions will be recognized worse than the other speakers' by both NH and CI listeners and vice versa)

Comparison between NH and CI recognition patterns (per speaker)

NH listeners

Comparison between NH and CI recognition patterns (per speaker)

NH listeners

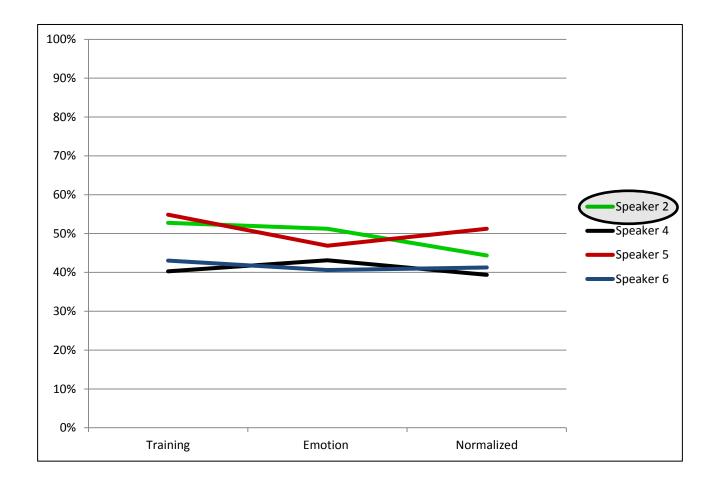
The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'emotion' condition differed significantly, $\chi^2(3) = 18.343$, p < .001.

A Post Hoc analysis using the Mann-Whitney U test revealed that only the differences between speaker 2 and speaker 4, 5, and 6 were significant at p < 0.01 for said pairs.

The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'emotion normalized' condition differed significantly, $\chi^2(3) = 44.326$, p < .001.

A Post Hoc analysis using the Mann-Whitney U test revealed that only the differences between speaker 2 and speaker 4, 5, and 6 were significant at p < 0.001 for said pairs.

The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'CI' condition differed significantly, $\chi^2(3) = 13.527$, p < .01.


A Post Hoc analysis using the Mann-Whitney U test revealed that the differences between speaker 2 and speaker 4, 5, and 6 were significant at p < 0.01 (for the speaker 2-4 pair) and at p < 0.05 (for the speaker 2-5 pair), and the difference between speaker 6 and 4 was significant at p < 0.05.

The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'CI normalized' condition differed significantly, $\chi^2(3) = 27.44$, p < .001.

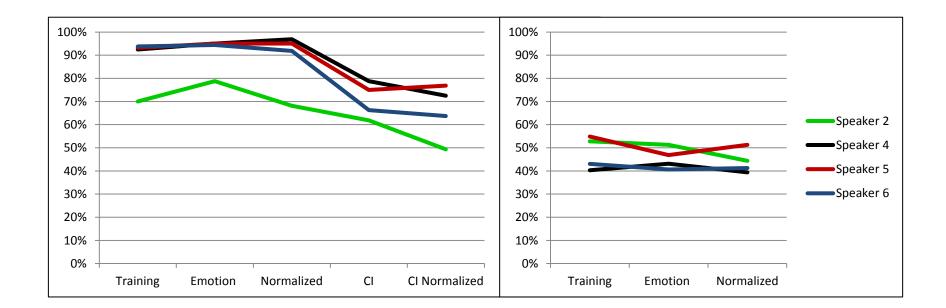
A Post Hoc analysis using the Mann-Whitney U test revealed that the differences between speaker 2 and speaker 4, 5, and 6 were significant at p < 0.001 (for the speaker 2-4 and 2-5 pairs) and at p < 0.01 (for the speaker 2-6 pair), and the difference between speaker 6 and speaker 5 was significant at p < 0.01.

Comparison between NH and CI recognition patterns (per speaker)

CI listeners

Comparison between NH and CI recognition patterns (per speaker)

CI listeners


The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'emotion' condition did not differ significantly, $\chi^2(3) = 2.977$, p = .395.

The Kruskal-Wallis test found that the recognition scores of the four speakers in the 'emotion normalized' condition did not differ significantly, $\chi^2(3) = 2.800$, p = .423.

Comparison between NH and CI recognition patterns (per speaker)

Speaker 2's emotions (and to a lesser extent speaker 6) recognized worse for NH listeners, but not for CI listeners

Apparently, speaker 2's recordings differ from the others' in such a way that NH but not CI listeners recognize his emotions less well

Optimality Theory account

How does speaker 2 differ from the other speakers?

Many phonetic cues play a role in recognizing emotions

Force of Articulation Model (D. Gilbers)

Mean pitch	Pitch range
Hyperarticulation	Word length
Syllable isochrony	Occlusion duration
Voice Onset Time (VOT)	Plosive release duration

Optimality Theory account

...

Hypothesis

NH and CI users use the same phonetic cues in determining which emotion they are confronted with, but the relative importance they assign to these phonetic cues differs between them

Perhaps due to for instance limitations of cochlear implants, extensive lack of exposure to sound, etc.

Optimality Theory account

Mean Pitch

Speaker 2 has a lower voice; CI cut-off 160 Hz \rightarrow CI-user misses prevoicing cues (plus some F₀ information)

mean pitch less important cue for CI-users

Pitch Range

Ratio range anger-sadness Speaker 2	\rightarrow	3:1
Ratio range anger-sadness Speakers 4, 5, and 6	\rightarrow	~2:1

pitch range important cue for CI-users

Hyperarticulation

Speaker 2 has less hyperarticulated speech

hyperarticulation less important for CI-users

Word length

Speaker 2 speaks fastest

(slow) speech rate less important for CI-users

Isochrony

Speaker 2 scores relatively best

isochrony important for CI-users

Occlusion/VOT/plosive duration

No differences

Optimality Theory account

Cues for emotion recognition – NH and CI orderings

Preliminary

NH

CI

	MEAN PITCH	HYPER- ARTICULATION	SPEECH RATE	PITCH RANGE	ISOCHRONY	OCCLUSION VOT SEGM. LENGTH
Anger		 	<u>.</u>		 	SEGM. LENGTH
Sadness						
Јоу						
Relief						

Acoustic signal	PITCH RANGE	ISOCHRONY	HYPER- ARTICULATION	SPEECH RATE	OCCLUSION VOT SEGM. LENGTH
Anger				 	
Sadness				- 	
Joy				 	
Relief					

Conclusion

Pitch analyses

Pitch range:	significantly wider for high arousal
Mean pitch:	significantly higher for high arousal
Modality:	significantly more peaks for high arousal

Emotion recognition

NH scored significantly better than CI on emotion recognition task (also when comparing NH's CI simulation scores to CI's actual implant scores)

NH and CI recognition patterns

Speaker 2's emotions are less well recognized than the others' by NH Speaker 2's emotions are equally well recognized as the others' by CI

Optimality Theory account

NH and CI users use the same phonetic cues in determining which emotion they are confronted with, but the relative importance they assign to these phonetic cues differs between them

NH: mean pitch > pitch range **CI:** pitch range > mean pitch

Questions

