Face Description and CMC

- Mixed Effects Logistic Regression

Guanghao You

Fixed Effects

- Deletes
- Typing Time
- Number of Turns
=Number of Total Trials

Random Effects

- Variability
- Subject - Participants
- Language capacity - Intercept
- Deletes (typing behavior) - Random slope
- Item - Faces (Images)
- Easy/difficult- Intercept
- Salient/Neutral (number of turns) - Random slope

Pre-processing

- Centering
- Subtracted by mean
- Avoid a spurious correlation (between slope and intercept)
- Rescaling
- Typing Time in unit (ms) - WARNING: huge!

Basic Model - Trial I

Formula: my.data. Successoftrial ~ my.data. DeletesPerTrial + my.data. TypingTimePerTrial + my.data. NumberofTextTurnsPerTrial + (1 | my.data. DyadID) + (1 | my.data.Trialno) Data: face.data

Basic Model - Trial II

```
Formula: my.data.SuccessofTrial ~ my.data.DeletesPerTrial + my.data.NumberofTextTurnsPerTrial +
    (1 | my.data.DyadID) + (1 | my.data.TrialNo)
Data: face.data
\begin{tabular}{rrrrr} 
AIC & BIC & logLik deviance & df.resid \\
223.7 & 240.2 & -106.8 & 213.7 & 197
\end{tabular}
scaled residuals:
    Min
-2.3371 -0.5934 0.3246 0.5154 2.7007
Random effects:
    Groups Name Variance Std.Dev.
    my.data.DyadID (Intercept) 0.7796 0.8829
    my.data.TrialNo (Intercept) 1.0950 1.0464
Number of obs: 202, groups: my.data.DyadID, 16; my.data.Tria`No, 13
Fixed effects:
\begin{tabular}{rrrrr} 
Estimate & Std. Error & z value & \(\operatorname{Pr}(>|z|)\) & \\
1.3017 & 0.4221 & 3.084 & 0.00204 & ** \\
0.6596 & 0.2812 & 2.345 & 0.01900 & * \\
-0.5335 & 0.2888 & -1.847 & 0.06469 &
\end{tabular}
```


Add Random Slope - Trial I

Formula: my.data.SuccessofTrial \sim my.data. DeletesPerTrial + my.data. NumberoftextTurnsPerTrial + (1 | my.data. DyadID) + (0 + my.data.DeletesPerTrial | my.data.DyadID) +
(1 | my.data. TrialNo)
Data: face.data

AIC	BIC	logLik deviance df.resid		
223.2	243.1	-105.6	211.2	196

scaled residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-2.3784 & -0.5723 & 0.3019 & 0.5000 & 2.9131\end{array}$
Random effects:
Groups Name Variance Std. Dev.
$\begin{array}{llll}\text { my.data. DyadID (Intercept) } 0.6492 & 0.8057\end{array}$
my.data. DyadID. 1 my.data. DeletesPerTrial $0.5685 \quad 0.7540$
my.data.Trialno (Intercept) 1.1711 1.0822
Number of obs: 202, groups: my.data. DyadID, 16; my.data.TrialNo, 13
Fixed effects:
(Intercept)
my.data. DeletesperTrial
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
my. data. NumberofTextTurnsPerTrial

1.3839	0.4429	3.125	0.00178 **

$0.9316 \quad 0.4098 \quad 2.273 \quad 0.02300$ *
$\begin{array}{llll}-0.5510 & 0.2999 & -1.837 & 0.06621\end{array}$

Add Random Slope - Trial II

Formula: my.data. Successoftrial \sim my.data. DeletesPerTrial + my.data. NumberoftextTurnsPerTrial + (1 | my.data. DyadID) + (0 + my.data. NumberofTextTurnsPerTrial |
my.data. DyadID $)+(1$ | my.data. TrialNo)
Data: face.data

AIC	BIC	logLik deviance df.resid		
222.3	242.1	-105.1	210.3	196

scaled residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-2.4306 & -0.5646 & 0.3346 & 0.5151 & 1.5950\end{array}$
Random effects:

Groups	Name	Variance	Std. Dev
my.data. DyadID	(Intercept)	0.313	0.5595
my.data. Dyadid. 1	my.data. NumberoftextTurnsPerTrial	0.676	0.8222
my.data. Trialno	(Intercept)	1.158	1.0761
Number of obs: 202	, groups: my.data. DyadID, 16; my	data. Tr	No, 13

Fixed effects:
(Intercept)
my. data. DeletesPerTrial
my. data. NumberoftextTurnsPerTrial

Estimate	std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
1.3513	0.4164	3.245	0.00117	$* *$
0.8096	0.3265	2.479	0.01316	$*$
-0.5436	0.3901	-1.393	0.16352	

Correlation?

Formula: my.data. SuccessofTrial \sim my.data. DeletesPerTrial + my.data. NumberoftextTurnsPerTrial + (1 + my.data. NumberofTextTurnsPerTrial | my.data. DyadID) +
(1 | my.data. Trialno)
Data: face.data

AIC	BIC	logLik deviance df.resid		
224.0	247.1	-105.0	210.0	195

Scaled residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-2.4796	-0.5614	0.3407	0.5021	1.6533

Random effects:

Groups	Name	Variance	Std. Dev. Corr	
my.data. DyadID	(Intercept)	0.3455	0.5878	
	my.data.NumberofTextTurnsPerTrial	0.6029	0.7764	0.39

$\begin{array}{lll}\text { my.data.Trialno (Intercept) } & 1.1461 & 1.0706\end{array}$
Number of obs: 202, groups: my.data. DyadID, 16; my.data.Trialno, 13
Fixed effects:
(Intercept)
my. data. DeletesPerTrial

Estimate	Std. Error z value	$\operatorname{Pr}(>\|z\|)$		
1.3298	0.4180	3.181	0.00147	$* *$
0.8324	0.3290	2.530	0.01140	$*$
-0.5226	0.3907	-1.338	0.18104	

Correlation?

Formula: my.data. SuccessofTrial ~ my.data. DeletesPerTrial + my.data. NumberoftextTurnsPerTrial + (1 + my.data. DeletesPerTrial | my.data.DyadID) + (1 | my.data. TrialNo) Data: face.data

Does centering help?

Formula: my.data. Successoftrial \sim my.data. DeletesPerTrial + my.data. NumberoftextTurnsPerTrial + (1 + my.data. DeletesPerTrial | my.data. DyadID) + (1 | my.data. TrialNo)
Data: comp.data

More Correlation

Formula: my.data. Successoftrial \sim my.data. DeletesPerTrial + my.data. NumberoftextTurnsPertrial + (1 + my.data. DeletesPerTrial | my.data. DyadID) + (1 + my.data. NumberoftextTurnsPerTrial | my.data. TrialNo)
Data: face.data

AIC	BIC	logLik deviance df. resid		
222.2	252.0	-102.1	204.2	193

scaled residuals:

Min	$1 Q$	Median	3Q	Max
.6110	-0.4944	0.2841	0.4963	1.9207

Random effects:

Groups	Name	Variance		Std. Dev. Corr
my.data. DyadID	(Intercept)	0.6987	0.8359	
	my.data.DeletesPerTrial	0.6436	0.8022	0.83
my.data.TrialNo	(Intercept)	1.1884	1.0901	
	my.data.NumberofTextTurnsPerTrial	0.2725	0.5221	-1.00

Number of obs: 202, groups: my.data.DyadID, 16; my.data.TrialNo, 13
Fixed effects:

Estimate	std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
1.3632	0.4547	2.998	0.00272	**
0.9869	0.4651	2.122	0.03386	*
-0.6695	0.3550	-1.886	0.05930	

More Trials...

- ... (0 + Deletes + Turns | Dyad $)+(1 \mid$ Dyad $) ..$
- ... (0 + Deletes * Turns | Dyad) + (1 | Dyad) ...
- ... (1 + Deletes * Turns | Dyad) ...
- ... (1 + Deletes | Dyad) + (0 + Turns | Dyad) ...
- ...
- ...
- All AICs were higher than previous ones

Best Model (?)

- Success ~ Deletes + Turns + (1 + Deletes | Dyad $)+(1+$ Turns| Face $)$
- Not quite yet - model criticism
- Trim!

Trim!

The Trimmed Model

- 6 'outliers’ were discarded (3\%)

Formula:
my.data. SuccessofTrial ~ my.data. DeletesPerTrial + my.data. NumberofTextTurnsPerTrial +
(1 + my.data. DeletesPerTrial | my.data. DyadID) + (1 + my.data. NumberofTextTurnsPerTrial | my.data. Trialno)
Data: trimmed.data

AIC	BIC	logLik deviance df.resid		
191.4	220.9	-86.7	173.4	187

Min	1Q	Median	3Q	Max
-1.8844	-0.3008	0.1733	0.3818	2. 5741

Groups	Name	Variance	Std. Dev.	Corr
my.data. DyadID	(Intercept)	1.1978	1.0945	
	my. data. DeletesPerTrial	1.4297	1.1957	0.91
my.data. Trialno	(Intercept)	2.6837	1.6382	
	my. data. NumberofTextTurnsPerTrial	0.5869	0.7661	-1.00

Fixed effects:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	2.0277	0.6849	2.961	$0.00307 * *$
my. data. DeletesPerTria1	1.3831	0.6526	2.119	0.03406 *
my. data.NumberofTextTurnsPerTrial	-0.8501	0.4724	-1.800	0.07192.

The Trimmed Model

- Comparison
- AIC
- The original model: 225.5
- With random slope: 222.2
- The trimmed: 191.4
- Improved fit
- The original model: 0.36970128
- With random slope: 0.41799971
- The trimmed:
0.51134736

Bootstrapping Sampling

bs.logr = confint(trimmed.model, method="boot", nsim=100, level =0.95)

.sig01	0.08290903	2.48616337
.sig02	-0.80104389	1.00000000
.sig03	0.12422096	2.77711940
.sig04	0.36206041	3.32814093
.sig05	-1.00000000	0.09084085
.sig06	0.14430470	2.32085977
(Intercept)	0.73748654	5.51388810
my.data.DeletesperTria1	0.36178490	3.67961122
my.data.NumberofTextTurnsPerTrial	-2.50949160	-0.01031134

Conclusions

- More repairs (deletes) could significantly enhance game performance, namely the coordination in CMC.
- Coordination could also benefit from fewer turns, but less significantly.

Problem encountered

- Failed to converge?
- Supervised learning
- Optimizer: minimalize the loss function
- Might fail to find a meaningful minimization
- Fail to build a model to depict the training data
- Solution?
" Default setting: ‘Bobyqa’ and ‘Nelder_Mead’ - one for preliminary optimization, and one for finalizing the work
- Alternatively, try either one of them (or package 'optimx')

Thank you!

- Questions?

