Odds Ratios

applied to Negative Polarity Items

Methodology and Statistics Laura Handojo

Outline

- Negative Polarity Items
- Research Question
- Data
- Odds Ratios
- Statistical Analysis

Negative Polarity Items

- Negative Polarity Items (NPIs)
 - can only occur in negative contexts
 - He hasn't seen any students
 - * He has seen any students
 - single words or word groups
 - ever vs. lift a finger
 - various parts of speech
 - advers, verb phrases, noun phrases etc.

Negative Contexts

- called licensers, include:
 - negation
 - neg raising verbs (e.g. *think*)
 - N-words (e.g. *never*, *nobody*)
 - negative verbs (e.g. *doubt*)
 - negative conjunctions (e.g. *without*)
 - conditionals
 - universal quantifiers
 - superlatives
 - comparatives
 - questions
 - downward entailing expressions (e.g. *hardly*)
 - other (e.g. only)

NPI Classification

- the distribution of every NPI can be different
- classification by means of their licenser (Zwarts 1997)

	Negation				
NPI	classical/ antimorphic	regular/ antiadditive	minimal/ downward entailing		
weak	+	+	+		
strong	+	+	-		
superstrong	+	-	-		

Research Question

- NPI classification by means of their licenser possible?
- use of an association measure: Odds Ratio
 - association strength between an NPI and all negative contexts
 - determines the 'negative polarity' of an item
 - association strength between an NPI and the three classes of negation
 - shows if there is statistical evidence for Zwarts' (1997) theory

Research Hypothesis

all NPIs:

- occur more often than expected in negative contexts
- weak NPIs:
 - occur more often than expected at least in DE contexts and possibly also in AA and AM contexts
- strong NPIs:
 - occur more often than expected at least in AA contexts and possibly also in AM contexts
 - occur less often than expected in DE contexts
- superstrong NPIs:
 - occur more often than expected in AM contexts
 - occur less often than expected in AA and DE contexts

Data

- data set by Lichte & Soehn (2007)
 - 5.8 million sentences from the TüPP–D/Z corpus
 - lemmatized, annotated for clause structure
 - annotated for negative contexts:
 - PTKNEG antimorphic contexts
 - AM
 - AA \rightarrow anti-additive contexts
 - DE downward entailing contexts
 - DEINT

 $\bullet \rightarrow$ not all possible negative contexts are identified

Data

- select three NPIs:
 - one that is supposed to be weak: alle Tassen im Schrank haben (have all cups in the cupboard) – to have a screw loose
 - one that is supposed to be strong: sonderlich particularly
 - one that is supposed to be superstrong: jedermanns Sache (everyone's thing) – everyone's cup of tea

Odds Ratios

- association measure for categorical data
- uses a 2 x 2 contingency table
- present the odds of an outcome in the presence of some other variable

Odds Ratio

$$\widehat{\theta} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

	NPI	~ NPI	total
negative context	<i>n</i> ₁₁	<i>n</i> ₁₂	n_{1+}
~ negative context	<i>n</i> ₂₁	n ₂₂	n ₂₊
total	<i>n</i> ₊₁	n ₊₂	n

number of clauses

Odds Ratio

- the odds ratio is a nonnegative number
- $\hat{\theta} = 1 \rightarrow$ the variables are independent
- $\hat{\theta} > 1 \rightarrow$ the odds in row 1 are higher
 - the bigger the number, the stronger the association
- $\hat{\theta} < 1 \rightarrow$ the odds in row 2 are higher
 - the smaller the number, the stronger the association

Log Odds Ratio

- the sampling distribution of odds ratio is skewed for small to moderate sample sizes
- use of Log Odds Ratio
 - the natural logarithm of $\hat{\theta}$: log($\hat{\theta}$)
 - with log odds ratio, independence of the variables corresponds to log($\widehat{\theta}$) = 0

Log Odds Ratio

with log odds ratio, we can calculate the standard error and confidence intervals

• *SE*(log
$$\hat{\theta}$$
) = $\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$

- confidence intervals: $\log \hat{\theta} \pm z_{a/2} \times SE(\log \hat{\theta})$
 - $z_{a/2}$ defines the confidence limits
 - for a 95% confidence interval, $z_{a/2} = 1.96$
 - confidence intervals for odds ratio can be calculated by exponentiating those of log odds ratio

Tassen im Schrank

	Tassen im Schrank	~ Tassen im Schrank	total
negative contexts	26	1,423,766	1,423,792
~ negative contexts	2	8,076,905	8,076,907
total	28	9,500,671	9,500,699

$\widehat{\theta} = 73.75; \log \widehat{\theta} = 4.3$

- 95% confidence interval for $\hat{\theta}$: (17.5, 310.7)
- 95% confidence interval for log $\hat{\theta}$: (2.9, 5.7)
- the odds for Tassen im Schrank to occur in a negative context are 74 times higher than in a non-negative context
- strongly associated with negative polarity

Tassen im Schrank

	frequencies (n ₁₁)	odds ratio + confidence interval		log odds ratio + confidence interval	
anti- morphic	10	7.09	3.3, 15.4	1.96	1.2, 2.7
anti- additive	0	0			
downward entailing	16	25.92	12.3, 54.8	3.26	2.5, 4

- Tassen im Schrank is 26 times more likely in a 'weak' context and 7 times more likely in a 'superstrong' context than in other contexts
- but: for a classification, n should not be the number of all clauses, but that of all negative clauses, right?

Tassen im Schrank

	frequencies	odds ratio +		log odds ratio +	
	(n ₁₁)	confidence interval		confidence interval	
anti-	10	7.09	3.3, 15.4	1.96	1.2, 2.7
morphic		0.59	0.3, 1.3	- <mark>0.53</mark>	- 1.3, 0.25
anti- additive	0	0			
downward	16	25.92	12.3, 54.8	3.26	2.5, 4
entailing		2.75	1.3, 5.8	1.01	0.3, 1.8

- Tassen im Schrank is 3 times more likely to occur in a 'weak' context than in 'strong' and 'superstrong' ones
- can be classified as a weak NPI?

Sonderlich

	sonderlich	~ sonderlich	total
negative contexts	879	1,422,913	1,423,792
~ negative contexts	102	8,076,805	8,076,907
total	981	9,499,718	9,500,699

- $\widehat{\theta} = 48.92; \log \widehat{\theta} = 3.89$
- 95% confidence interval for log $\hat{\theta}$: (3.7, 4.1)
- 95% confidence interval for $\hat{\theta}$: (39.9, 60.1)
- the odds for *sonderlich* to occur in a negative context are 49 times higher than in a non-negative context
- strongly associated with negative polarity

Sonderlich

	frequencies	odds ratio +		log odds ratio +	
	(n ₁₁)	confidence interval		confidence interval	
anti-	781	49.9	42.7, 58.3	3.91	3.8, 4.1
morphic		4.15	3.6, 4.8	1.42	1.3, 1.6
anti-	94	3.64	2.9, 4.5	1.29	1.1, 1.5
additive		<mark>0.46</mark>	0.4, 0.6	- <mark>0.78</mark>	- 0.99, - 0.6
downward	4	0.08	0.03, 0.2	- 2.53	- 3.5, - 1.5
entailing		0.01	0.004, 0.03	- 4.61	- 5.6, - 3.6

- sonderlich is 50 times more likely in a 'superstrong' and 4 times more likely in a 'strong' context than in other contexts
- it is 4 times more likely in a 'superstrong' context than in a 'strong' or 'weak' one
- can or cannot be classified as a strong NPI?

Jedermanns Sache

	jedermanns Sache	~ jedermanns Sache	total
negative contexts	66	1,423,726	1,423,792
~ negative contexts	0	8,076,907	8,076,907
total	66	9,500,633	9,500,699

- $\widehat{\theta} = 374.42; \log \widehat{\theta} = 5.93$
- the odds for *jedermanns Sache* to occur in a negative context are 374 times higher than in a non-negative context
- strongly associated with negative polarity

Jedermanns Sache

	frequencies (n ₁₁)			log odds ratio + confidence interval	
anti-	64	408.5	100, 1668.9	6.01	4.6, 7.4
morphic		<mark>34</mark>	8.3, 138.9	3.53	2.1, 4.9
anti- additive	0	0			
downward	2	0.61	0.1, 2.5	- 0.49	- 1.9, 0.9
entailing		<mark>0.06</mark>	0.01, 0.2	- 2.81	- 4.2, - 1.4

- jedermanns Sache is 409 times more likely to occur in 'superstrong' contexts than in others
- it is 34 times more likely to occur in a 'superstrong' context than in a 'strong' or 'weak' one
- can be classified as a superstrong NPI?

Discussion

- for n, is the number of all clauses or that of all negative clauses relevant (does not always result in the same classification)
- can the method really prove that Zwarts' theory is appropriate

References

- Alan Agresti (1996). An Introduction to Categorical Data Analysis. Wiley: New York.
- Timm Lichte and Jan-Philipp Soehn (2007): "The retrieval and classification of negative polarity items using statistical profiles." In: Sam Featherston and Wolfgang Sternefeld (eds.). *Roots: Linguistics in Search of its Evidential Base*. Berlin: Mouton de Gruyter. pp. 249 – 266.