Odds Ratios

applied to Negative Polarity Items

Methodology and Statistics
Laura Handojo

Outline

- Negative Polarity Items
- Research Question
- Data
- Odds Ratios
- Statistical Analysis

Negative Polarity Items

- Negative Polarity Items (NPIs)
- can only occur in negative contexts
- He hasn't seen any students
- * He has seen any students
- single words or word groups
- evervs. lift a finger
- various parts of speech
- advers, verb phrases, noun phrases etc.

Negative Contexts

- called licensers, include:
negation
- neg raising verbs (e.g. think)
- N -words (e.g. never, nobody)
- negative verbs (e.g. doubt)
- negative conjunctions (e.g. without)
- conditionals
- universal quantifiers
- superlatives
- comparatives
- questions
- downward entailing expressions (e.g. hardly)
- other (e.g. on/y)

NPI Classification

- the distribution of every NPI can be different
- classification by means of their licenser (Zwarts 1997)

NPI	Negation		
	classical/ antimorphic	regular/ antiadditive	minimal/ downward entailing
	+	+	+
strong	+	+	-
superstrong	+	-	-

Research Question

- NPI classification by means of their licenser possible?
- use of an association measure: Odds Ratio
- association strength between an NPI and all negative contexts
- determines the 'negative polarity' of an item
- association strength between an NPI and the three classes of negation
- shows if there is statistical evidence for Zwarts' (1997) theory

Research Hypothesis

- all NPIs:
- occur more often than expected in negative contexts
, weak NPIs:
- occur more often than expected at least in DE contexts and possibly also in AA and AM contexts
, strong NPIs:
- occur more often than expected at least in AA contexts and possibly also in AM contexts
- occur less often than expected in DE contexts
, superstrong NPIs:
- occur more often than expected in AM contexts
- occur less often than expected in AA and DE contexts

Data

- data set by Lichte \& Soehn (2007)
- 5.8 million sentences from the TüPP-D/Z corpus
- lemmatized, annotated for clause structure
- annotated for negative contexts:
- PTKNEG antimorphic contexts
- AM
- AA $\quad \rightarrow$ anti-additive contexts
- DE $]$ downward entailing contexts
- DEINT
$-\rightarrow$ not all possible negative contexts are identified

Data

, select three NPIs:

- one that is supposed to be weak: alle Tassen im Schrank haben (have all cups in the cupboard) - to have a screw loose
- one that is supposed to be strong: sonderlichparticularly
- one that is supposed to be superstrong: jedermanns Sache (everyone's thing) - everyone's cup of tea

Odds Ratios

- association measure for categorical data
- uses a 2×2 contingency table
- present the odds of an outcome in the presence of some other variable

Odds Ratio

$$
\hat{\theta}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}=\frac{n_{11} / n_{12}}{n_{21} / n_{22}}=\frac{n_{11} n_{22}}{n_{12} n_{21}}
$$

	NPI	\sim NPI	total
negative context	n_{11}	n_{12}	n_{1+}
\sim negative context	n_{21}	n_{22}	n_{2+}
total	n_{+1}	n_{+2}	n

number of clauses

Odds Ratio

- the odds ratio is a nonnegative number
- $\hat{\theta}=1 \rightarrow$ the variables are independent
- $\hat{\theta}>1 \rightarrow$ the odds in row 1 are higher
- the bigger the number, the stronger the association
- $\hat{\theta}<1 \rightarrow$ the odds in row 2 are higher
\circ the smaller the number, the stronger the association

Log Odds Ratio

- the sampling distribution of odds ratio is skewed for small to moderate sample sizes
- use of Log Odds Ratio
- the natural logarithm of $\hat{\theta}: \log (\hat{\theta})$
- with log odds ratio, independence of the variables corresponds to $\log (\hat{\theta})=0$

Log Odds Ratio

- with log odds ratio, we can calculate the standard error and confidence intervals
- $S E(\log \hat{\theta})=\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}+\frac{1}{n_{22}}}$
- confidence intervals: $\log \hat{\theta} \pm z_{a / 2} \times \operatorname{SE}(\log \hat{\theta})$
${ }^{\circ} z_{a / 2}$ defines the confidence limits
- for a 95% confidence interval, $z_{a / 2}=1.96$
- confidence intervals for odds ratio can be calculated by exponentiating those of log odds ratio

Tassen im Schrank

	Tassen im Schrank	\sim Tassen im Schrank	total
negative contexts	26	$1,423,766$	$1,423,792$
\sim negative contexts	2	$8,076,905$	$8,076,907$
total	28	$9,500,671$	$9,500,699$

- $\widehat{\boldsymbol{\theta}}=73.75 ; \log \widehat{\boldsymbol{\theta}}=4.3$
- 95% confidence interval for $\hat{\theta}$: $(17.5,310.7)$
- 95% confidence interval for $\log \hat{\theta}:(2.9,5.7)$
- the odds for Tassen im Schrank to occur in a negative context are 74 times higher than in a non-negative context
- strongly associated with negative polarity

Tassen im Schrank

	frequencies $\left(n_{11}\right)$	odds ratio + confidence interval		log odds ratio + confidence interval	
anti- morphic	10	7.09	$3.3,15.4$	1.96	$1.2,2.7$
anti- additive	0	0			
downward entailing	16	25.92	$12.3,54.8$	3.26	$2.5,4$

- Tassen im Schrank is 26 times more likely in a 'weak' context and 7 times more likely in a 'superstrong' context than in other contexts
- but: for a classification, n should not be the number of all clauses, but that of all negative clauses, right?

Tassen im Schrank

	frequencies $\left(n_{11}\right)$	odds ratio + confidence interval		log odds ratio + confidence interval	
antimorphic	10	$\begin{aligned} & \hline 7.09 \\ & 0.59 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.3,15.4 \\ 0.3,1.3 \end{array}$	$\begin{array}{\|l\|} \hline 1.96 \\ -0.53 \end{array}$	$\begin{array}{\|l\|} \hline 1.2,2.7 \\ -1.3,0.25 \end{array}$
antiadditive	0	0			
downward entailing	16	$\begin{aligned} & 25.92 \\ & 2.75 \end{aligned}$	$\begin{array}{\|l} \hline 12.3,54.8 \\ 1.3,5.8 \end{array}$	$\begin{array}{\|l\|} \hline 3.26 \\ 1.01 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.5,4 \\ & 0.3,1.8 \end{aligned}$

- Tassen im Schrank is 3 times more likely to occur in a 'weak' context than in 'strong' and 'superstrong' ones
- can be classified as a weak NPI?

Sonderlich

	sonderlich	\sim sonderlich	total
negative contexts	879	$1,422,913$	$1,423,792$
\sim negative contexts	102	$8,076,805$	$8,076,907$
total	981	$9,499,718$	$9,500,699$

- $\widehat{\boldsymbol{\theta}}=48.92 ; \log \widehat{\boldsymbol{\theta}}=3.89$
, 95% confidence interval for $\log \hat{\theta}$: $(3.7,4.1)$
- 95% confidence interval for $\hat{\theta}:(39.9,60.1)$
- the odds for sonderlich to occur in a negative context are 49 times higher than in a non-negative context
- strongly associated with negative polarity

Sonderlich

	frequencies $\left(n_{11}\right)$		odds ratio + confidence interval		log odds ratio + confidence interval	
anti-	781	49.9	$42.7,58.3$	3.91	$3.8,4.1$	
morphic		4.15	$3.6,4.8$	1.42	$1.3,1.6$	
anti-	94	3.64	$2.9,4.5$	1.29	$1.1,1.5$	
additive		0.46	$0.4,0.6$	-0.78	$-0.99,-0.6$	
downward	4	0.08	$0.03,0.2$	-2.53	$-3.5,-1.5$	
entailing		0.01	$0.004,0.03$	-4.61	$-5.6,-3.6$	

- sonderlich is 50 times more likely in a 'superstrong' and 4 times more likely in a 'strong' context than in other contexts
- it is 4 times more likely in a 'superstrong' context than in a 'strong' or 'weak' one
- can or cannot be classified as a strong NPI?

Jedermanns Sache

	jedermanns Sache	\sim jedermanns Sache	total
negative contexts	66	$1,423,726$	$1,423,792$
\sim negative contexts	0	$8,076,907$	$8,076,907$
total	66	$9,500,633$	$9,500,699$

- $\widehat{\boldsymbol{\theta}}=374.42 ; \log \widehat{\boldsymbol{\theta}}=5.93$
- the odds for jedermanns Sache to occur in a negative context are 374 times higher than in a non-negative context
- strongly associated with negative polarity

Jedermanns Sache

	frequencies $\left(n_{11}\right)$		odds ratio + confidence interval		log odds ratio + confidence interval	
anti- morphic	64	408.5 34	$100,1668.9$ $8.3,138.9$	6.01	$4.6,7.4$	
anti- additive	0	0				
downward entailing	2	0.61	$0.1,2.5$	-0.49	$-1.9,0.9$	

- jedermanns Sache is 409 times more likely to occur in 'superstrong' contexts than in others
- it is 34 times more likely to occur in a 'superstrong' context than in a 'strong' or 'weak' one
- can be classified as a superstrong NPI?

Discussion

- for n, is the number of all clauses or that of all negative clauses relevant (does not always result in the same classification)
- can the method really prove that Zwarts‘ theory is appropriate

References

- Alan Agresti (1996). An Introduction to Categorical Data Analysis. Wiley: New York.
- Timm Lichte and Jan-Philipp Soehn (2007): "The retrieval and classification of negative polarity items using statistical profiles." In: Sam Featherston and Wolfgang Sternefeld (eds.). Roots: Linguistics in Search of its Evidential Base. Berlin: Mouton de Gruyter. pp. 249-266.

