Hierarchical Bayesian Models for Modeling Cognitive Processes

Çağrı Çöltekin

Center for Language and Cognition University of Groningen c.coltekin@rug.nl

March 11, 2009

Overview

Bayesian Inference

Introduction(with comparison to frequentist statistics) A Simple Example

Bayesian Inference and Learning

MLE and MAP Bayesian Learning

Hierarchical Bayesian Models

A simple HBM example

Using HBMs for Learning Grammar

Categorial Grammars A Bayesian CG learner A hierarchical extension

Two views on statistics

Frequentist view

- Probabilities are long-run frequencies.
- We can talk about probabilities only for well defined experiments with random outcomes.
- Emphasis is on *objectivity*: data must speak for itself.

Bayesian view

- Probabilities are degrees of belief.
- Probabilities can be assigned to any statement.
- Inference is *subjective* (methods for somewhat objective inference exists)

Statistical Inference

- ▶ We collect a sample **X** from a population.
- We know (or assume) that X is according to a known distribution that can be parametrized by θ

$$p(heta|\mathbf{X}) = rac{p(\mathbf{X}| heta)p(heta)}{p(\mathbf{X})}$$

$$p(\theta|\mathbf{X})$$
: posterior

- $p(\mathbf{X}|\theta)$: likelihood ($\mathcal{L}(\theta)$)
- $p(\theta)$: prior
- $p(\mathbf{X})$: Marginal probability of data $(\int p(\mathbf{X}|\theta)p(\theta)d\theta))$

Statistical Inference: the two approaches

$$p(heta|\mathbf{X}) = rac{p(\mathbf{X}| heta)p(heta)}{p(\mathbf{X})} \ \propto p(\mathbf{X}| heta)p(heta)$$

Frequentist approach:

- θ is a fixed but unknown.
- Inference is done via *Maximum Likelihood Estimate* (MLE).
 Prior information is never used.
- We need to assess the reliability of the estimate by significance tests (p values, confidence intervals).
- Bayesian approach:
 - θ is is treated just like any other random variable.
 - Posterior contains all the necessary ingredients for the inference.

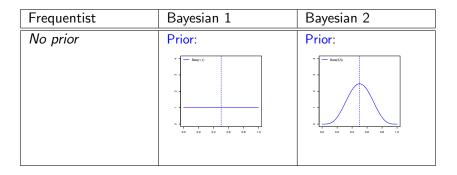
A simple example

We toss a coin 10 times, the outcome is *HHTHHHHTTH*. Let θ represent the chance that coin comes up '*H*'.

Frequentist	Bayesian 1	Bayesian 2	

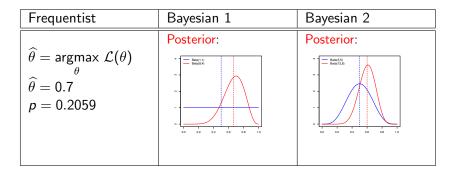
A simple example

We toss a coin 10 times, the outcome is *HHTHHHHTTH*. Let θ represent the chance that coin comes up '*H*'.



A simple example

We toss a coin 10 times, the outcome is *HHTHHHHTTH*. Let θ represent the chance that coin comes up '*H*'.



Bayesian Inference: summary

$p(heta|\mathbf{X}) \propto p(\mathbf{X}| heta)p(heta)$

Pros

- Allows complete inference: posterior distribution contains all the information needed.
- Interpretation of the results are straightforward.

Cons

- Computationally expensive: calculation of posteriors are not always easy.
- Choice of priors: it is sometimes difficult to justify the use of (subjective) priors.

Statistical Inference and Learning

- Statistical inference aims to draw conclusions about an underlying population using a sample drawn from this population.
- Learning can be viewed as making generalizations about the target concept by looking at a sample of data consistent with this concept.
- Statistical methods are most common learning methods in machine learning.
- More and more psychological phenomena is explained by sensitivity to statistical information in the environment.
- Language acquisition is no exception: children are known to exploit statistical regularities in the input in language learning.

(non-Bayesian) Statistical Learning

$$p(heta|\mathbf{X}) = rac{p(\mathbf{X}| heta)p(heta)}{p(\mathbf{X})} \ \propto p(\mathbf{X}| heta)p(heta)$$

We want to learn the parameter θ .

Maximum Likelihood Estimate(MLE):

$$\widehat{ heta} = rgmax_{ heta} p(\mathbf{X}| heta) \ _{ heta}$$

Maximum a posteriori (MAP) estimate:

$$\widehat{ heta} = \operatorname*{argmax}_{ heta} p(\mathbf{X}| heta) p(heta)$$

Bayesian Learning

$p(heta|\mathbf{X}) \propto p(\mathbf{X}| heta)p(heta)$

- No point estimates.
- No maximization.
- A Bayesian learner learns the posterior distribution, $p(\theta | \mathbf{X})$.
- If needed, point estimates can be made using,

$$E[heta] = \int heta p(heta | \mathbf{X}) d heta$$

Note the difference from MAP estimate.

Bayesian Learning: how?

$$p(heta|\mathbf{X}) = rac{p(\mathbf{X}| heta)p(heta)}{\int p(\mathbf{X}| heta)p(heta)d heta}$$

- Given the probability density (or distribution) functions for prior and likelihood, we simply multiply, and normalize.
- Note that likelihood and prior does not have to be proper. Multiplication by a constant does not change the results.

Problem 1: computation

The computation involved is not always easy to carry out. Approximate methods, such as MCMC, are frequently used.

Problem 2: priors

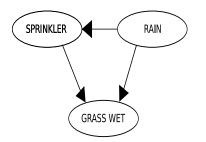
We need to choose a prior distribution.

Choice of priors

- Subjective priors: based on previous experience.
- ► Non-informative priors: try to be as objective as possible.
- Conjugate priors: for computational efficiency.
- Empirical Bayes: priors from data.
- Hierarchical priors: combining information from different variables.

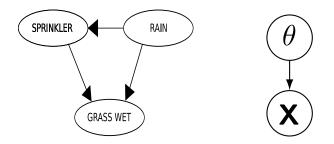
Digression: Graphical models (or 'Bayesian networks')

- Often multiple random variables interact.
- Bayesian networks are a convenient way to visualize the dependency relations between variables.



Digression: Graphical models (or 'Bayesian networks')

- Often multiple random variables interact.
- Bayesian networks are a convenient way to visualize the dependency relations between variables.



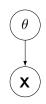
Hierarchical Bayesian Models

In our coin toss example we choose a $Beta(\alpha, \beta)$ prior with fixed α and β .

 $p(heta|\mathbf{X}) \propto p(\mathbf{X}| heta) p(heta)$

where,

 $\mathbf{X} \sim Binomial(\theta), \ \theta \sim Beta(\alpha, \beta)$



Hierarchical Bayesian Models

In our coin toss example we choose a $Beta(\alpha, \beta)$ prior with fixed α and β .

$$p(heta|\mathbf{X}) \propto p(\mathbf{X}| heta)p(heta)$$

where,

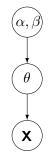
$$\mathbf{X} \sim Binomial(\theta), \ \theta \sim Beta(\alpha, \beta)$$

We can further extend this if choice of α and β can be guided by additional information.

$$p(\theta, \alpha, \beta | \mathbf{X}) \propto p(\mathbf{X} | \theta) p(\theta | \alpha, \beta) p(\alpha, \beta)$$

where, e.g.,

$$old X \sim {\sf Binomial}(heta), heta \sim {\sf Beta}(lpha,eta), lpha \sim {\sf N}(\mu_lpha,\sigma), eta \sim {\sf N}(\mu_eta,\sigma)$$



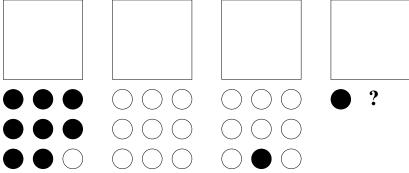
A simple example: marbles in boxes

Boxes contain either white or black marbles:

•?

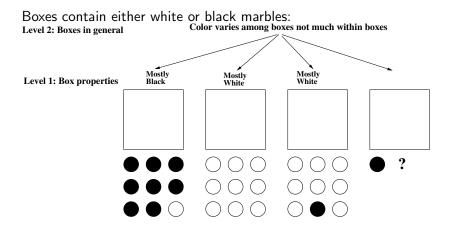
* This example is adopted from a talk by J. Tenenbaum *Hierarchical Bayesian Models* A simple example: marbles in boxes

Boxes contain either white or black marbles:



* This example is adopted from a talk by J. Tenenbaum *Hierarchical Bayesian Models*

A simple example: marbles in boxes

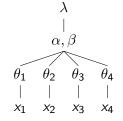


* This example is adopted from a talk by J. Tenenbaum *Hierarchical Bayesian Models*

HBM for marbles in boxes

x_i are the data

- θ_i models box proportions,
 x_i ~ Binomial(θ)
- *α*, *β* models the boxes in general,
 θ_i ∼ *Beta*(*α*, *β*)
- \blacktriangleright λ models prior expectations in boxes in general



 $p(\lambda, \alpha, \beta, \theta \mid \mathbf{X}) \propto p(\mathbf{X} \mid \theta) p(\theta \mid \lambda, \alpha, \beta) p(\alpha, \beta \mid \lambda) p(\lambda)$

Summary: HBMs for Modeling Human Learning

- Bayesian Statistics provides complete inference: posterior distribution contains all we need.
- Bayesian Learning is incremental: posterior can be used as prior for the next step.
- Hierarchical models allow a way to include information from different sources as prior knowledge.

Overview

Bayesian Inference

Introduction(with comparison to frequentist statistics) A Simple Example

Bayesian Inference and Learning MLE and MAP Bayesian Learning

Hierarchical Bayesian Models A simple HBM example

Using HBMs for Learning Grammar Categorial Grammars A Bayesian CG learner A hierarchical extension

Categorial Grammars

- Categorial Grammar (CG) encodes all the language specific syntactic information in the lexicon.
- ► CG Lexicon contains *lexical items* of the form:

$$\phi := \sigma : \mu$$

where ϕ is the *phonological form*, σ is the syntactic category, and μ is the meaning of the lexical item.

Syntactic categories in CG are,

- either a basic category, such as N, NP, S
- or, a complex category of the form X\Y or X/Y, where X and Y are any (basic or complex) CG categories. Informally:
 X/Y says: 'I need a Y to my *right* to become X'
 X\Y says: 'I need a Y to my *left* to become X'

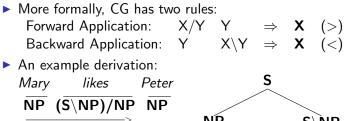
Categorial Grammars (contd.)

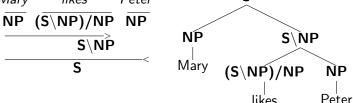
 More formally, CG has two rules: Forward Application: X/Y Y ⇒ X (>) Backward Application: Y X\Y ⇒ X (<)

An example derivation:

Mary	likes	Peter
NP	$(\overline{S \setminus NP})/NP$	NP
	S∖NP	
	S	<

Categorial Grammars (contd.)





likes

A simple CG learner for learning word-grammars

- Input is a set of words.
- We want to assign a probability, θ , to possible lexical items $(\langle \phi, \sigma \rangle$ pairs).
- ▶ Note: probability is the 'system's belief' that the $\langle \phi, \sigma \rangle$ pair at hand is a lexical item.
- Only 3 categories (known in advance):
 - **W** : free morpheme (word, or stem)
 - ► W/W :

A simple CG learner for learning word-grammars

- Input is a set of words.
- We want to assign a probability, θ , to possible lexical items $(\langle \phi, \sigma \rangle$ pairs).
- ▶ Note: probability is the 'system's belief' that the $\langle \phi, \sigma \rangle$ pair at hand is a lexical item.
- Only 3 categories (known in advance):
 - **W** : free morpheme (word, or stem)
 - W/W : prefix
 - ► **W****W** :

A simple CG learner for learning word-grammars

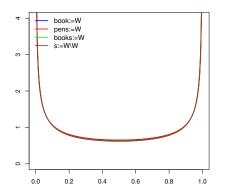
- Input is a set of words.
- We want to assign a probability, θ , to possible lexical items $(\langle \phi, \sigma \rangle$ pairs).
- ▶ Note: probability is the 'system's belief' that the $\langle \phi, \sigma \rangle$ pair at hand is a lexical item.
- Only 3 categories (known in advance):
 - ► W : free morpheme (word, or stem)
 - W/W : prefix
 - ► W\W : suffix
- We adopt a *Beta/Binomial* model.
- We assume each input word provides evidence for the lexical hypothesis in question, If hypothesis used in the interpretation of the input.

The CG learner: A simple algorithm

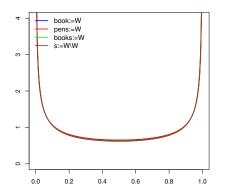
- Input is unsegmented words (and the lexicon).
- Output is the lexicalized grammar with probability assignments.

For each input word w,

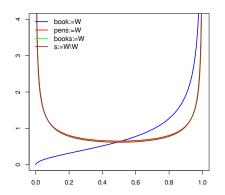
- 1. Try to segment the input using the current lexicon.
- 2. If there is no possible segmentation, assume that we have found evidence for a lexical item w := W.
- 3. If we can segment the input as $w = \phi_1 \dots \phi_N$, assume that we have observed evidence for each tuple $\langle \phi_i, \sigma_j \rangle$ which yields a correct parse of w.
- 4. We update the parameters of the Beta distribution associated with the lexical hypotheses.



Lexicon {} Input book Hypotheses Parses

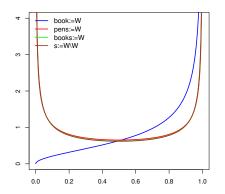


Lexicon {} Input book Hypotheses book:=W Parses



Lexicon {book:=W} Input book Hypotheses book:=W Parses book W

Hierarchical Bayesian Models

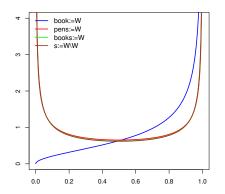


Lexicon Input Hypotheses Parses

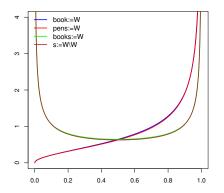
 $\{book:=W\}$

pens

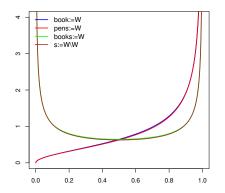
Hierarchical Bayesian Models



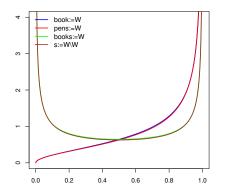
Lexicon {book:=W} Input pens Hypotheses pens:=W Parses



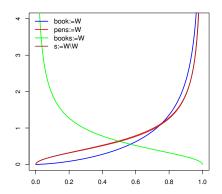
Lexicon {book:=W, pens:=W} Input pens Hypotheses pens:=W Parses **pens** W



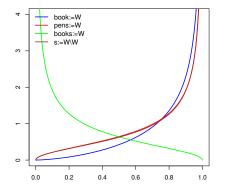
Lexicon {book:=W, pens:=W} Input books Hypotheses Parses



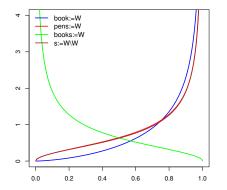
Parses



Lexicon {book:=W, pens:=W, s:=W\W} Input books Hypotheses book:=W. books:=W, s:=W, book:=W/W, $s:=W\setminus W$ books Parses W book s $W \quad W \setminus W$ W book s W/W W ___>

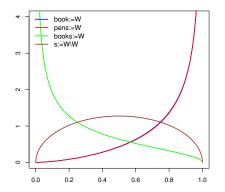


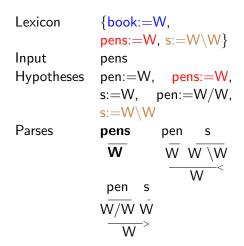
Lexicon {book:=W, pens:=W, s:=W\W} Input pens Hypotheses Parses



Lexicon $\{book:=W, pens:=W, s:=W\setminus W\}$ Input pens Hypotheses pen:=W, pens:=W, s:=W, pen:=W/W, s:=W\setminus W

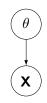
Parses





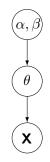
A hierarchical extension

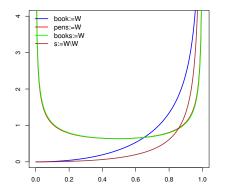
- Our current model assumes rather non-informative values for α and β.
- We can extend this model to get more informative priors



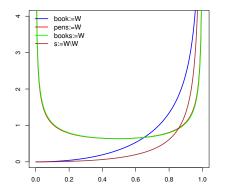
A hierarchical extension

- Our current model assumes rather non-informative values for α and β.
- We can extend this model to get more informative priors
- \blacktriangleright We treat α and β as random variables.
- We make use of context predictability as another source providing a hierarchical informative prior for possible segments.

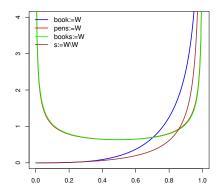




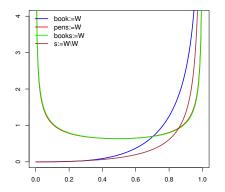
Lexicon	{}
Input	book
Hypotheses	
Parses	



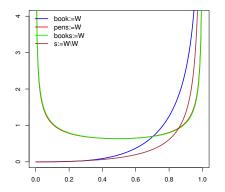
Lexicon	{}
Input	book
Hypotheses	book:=W
Parses	



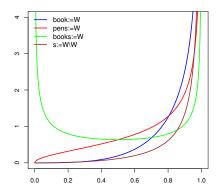
Lexicon	{book:=W}
Input	book
Hypotheses	book:=W
Parses	book
	W

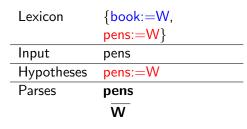


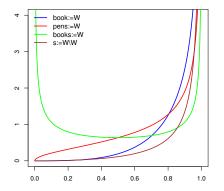
{book:=W}
pens

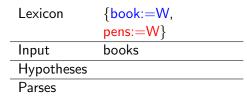


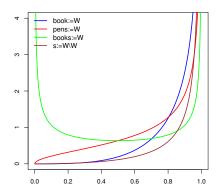
Lexicon	{book:=W}
Input	pens
Hypotheses	pens:=W
Parses	

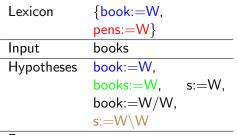




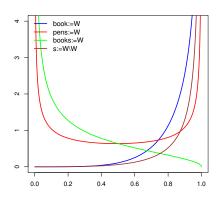




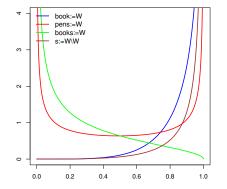


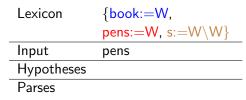


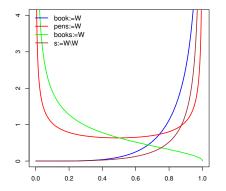
Parses



Lexicon	{book:=W,
	$pens{:=}W, s{:=}W\backslashW\}$
Input	books
Hypotheses	book:=W,
	books:=W, s:=W,
	book:=W/W,
	$s:=W \setminus W$
Parses	books
	W
	book s
	$\overline{\mathbf{W}}$ $\overline{\mathbf{W}} \setminus \overline{\mathbf{W}}$
	<
	book s
	W/W W
	>

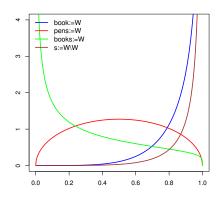


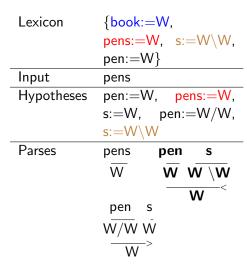




Lexicon	{book:=W,
	pens:=W, s:= $W \setminus W$ }
Input	pens
Hypotheses	pen:=W, pens:=W,
	s:=W, pen:= W/W ,
	$s:=W\setminus W$

Parses





Summary

- Bayesian statistics provides a different approach to statistical inference and learning.
- Use of (subjective) priors is not always bad: Modeling cognitive processes is a good example.
- Hierarchical priors is a good way to combine information from different sources.