Multivariate ANOVA & Repeated Measures

Hanneke Loerts

April 16, 2008

Methodology and Statistics

Outline

- Introduction
- Multivariate ANOVA (MANOVA)
- Repeated Measures ANOVA
- Some data and analyses

Introduction

- When comparing two groups
 → T-test
- When comparing three or more groups
 → ANOVA

- Multivariate Analysis of Variance
 - Compares 3 or more groups
 - Compares variation between groups with variation within groups
- Difference: MANOVA is used when we have 2 or more dependent variables

An example

- Test effect of a new antidepressant (=IV)
 - Half of patients get the real drug
 - Half of patients get a placebo
- Effect is tested with BDI (=DV)
 - Beck Depression Index scores (a self-rated depression inventory)
- In this case \rightarrow T-test

An example

- We add an independent variable
 - IV1 = drug type (drug or placebo)
 - IV2 = psychotherapy type (clinic or cognitive)
- We compare 4 groups now:
 - 1: placebo, cognitive
 - 2: drug, clinic
 - 3: placebo, clinic
 - 4: drug, cognitive
- In this case \rightarrow ANOVA

An example

- We add two other dependent measures:
 - Beck Depression Index scores (a self-rated depression inventory),
 - Hamilton Rating Scale scores (a clinician rated depression inventory), and
 - Symptom Checklist for Relatives (a made up rating scale that a relative completes on the patient).

An example: the data

Group	Drug	Therapy	Mean BDI	Mean HRS	Mean SCR
1	Placebo	Cogn.	12	9	6
2	Drug	Clinic	10	13	7
3	Placebo	Clinic	16	12	4
4	Drug	Cogn.	8	3	2

Note: high scores indicate more depression, low scores indicate normality

Why not three separate ANOVA's?

- Increase in alpha-level \rightarrow type 1 errors
- Univariate ANOVA's cannot compare the dependent measures
 - \rightarrow possible correlations are thrown away
- Use MANOVA

Recall:

- F statistic = MS_M / MS_R
- F statistic = total amount of variation that needs to be explained by:
 - $-MS_{M}$ = systematic variation / variance given that all observations come from single distribution
 - $-MS_R$ = residual variation / variance of each condition separately

Recall:

• F statistic = MS_M / MS_R

- If $F < 1 \rightarrow MS_R > MS_M$
- If $F > 1 \rightarrow MS_R < MS_M$

- Univariate ANOVA for every Dependent
 Variable
- But: we also want to know about the correlations between the DV's

- Each subject now has multiple scores: there is a matrix of responses in each cell
- Additional calculations are needed for the difference scores between the DV's
- Matrices of difference scores are calculated and the matrix squared
- When the squared differences are summed you get a sum-of-squares-and-cross-products-matrix
 - This is actually the matrix counterpart to the sums of squares
- Now we can test hypotheses about the effects of the IVs on linear combination(s) of the DVs

- Tests used for MANOVA:
 - Pillai's
 - Wilks'
 - Hotelling's

Hypotheses MANOVA

- H₀: There is no difference between the levels of a factor
- H_a: There is a difference between at least one level and the others

Assumptions MANOVA

- Independence of observations
- Multivariate normality
 - For dependent variables
 - For linear combinations
- Equality of covariance matrices (similar to homogeneity of variance)

Back to the example

- The effect of drug (IV1) and psychotherapy (IV2) on depression measures
- Now we add measurement points
 - Before the treatment
 - 1 week after the treatment
 - 2 weeks after the treatment
 - Etc.

Repeated measures

- When the same variable is measured more than once for each subject
- Reduces unsystematic variability in the design → greater power to detect effects

Repeated measures

- Violates the independence assumption
 One subject is measured repeatedly
- Assumption of sphericity
 - relationship between pairs of experimental conditions is similar → level of dependence is roughly equal

Repeated measures

- Sphericity assumption $\boldsymbol{\epsilon}$
- Holds when:

variance A-B = variance A-C = variance B-C

- Measured by Mauchly's test in SPSS
- If significant then there are differences and sphericity assumption is not met

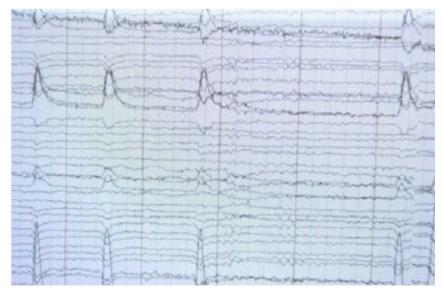
MANOVA vs Repeated Measures

- In both cases: sample members are measured on several occasions, or trials
- The difference is that in the repeated measures design, each trial represents the measurement of the same characteristic under a different condition

MANOVA vs Repeated measures

- MANOVA: we use several dependent measures
 - BDI, HRS, SCR scores
- Repeated measures: might also be several dependent measures, but each DV is measured repeatedly
 - BDI before treatment, 1 week after, 2 weeks after, etc.

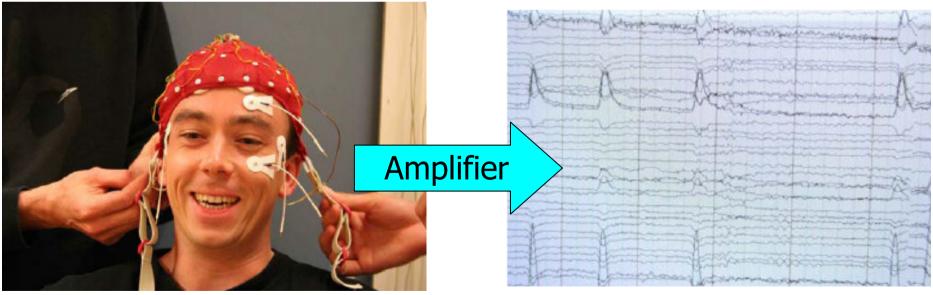
An experiment using Repeated Measures


- ERP: event-related brain potentials
 - Changes of voltage in the brain that can be timelocked to a specific (linguistic) stimulus
- ERP:
 - Provides a timeline of processing
 - Can tell us at which point certain aspects of language are processed in the brain

Compare: correct to incorrect

Event A: I saw a nice **cloud** on the horizon

Event B: I saw two nice **cloud** on the horizon



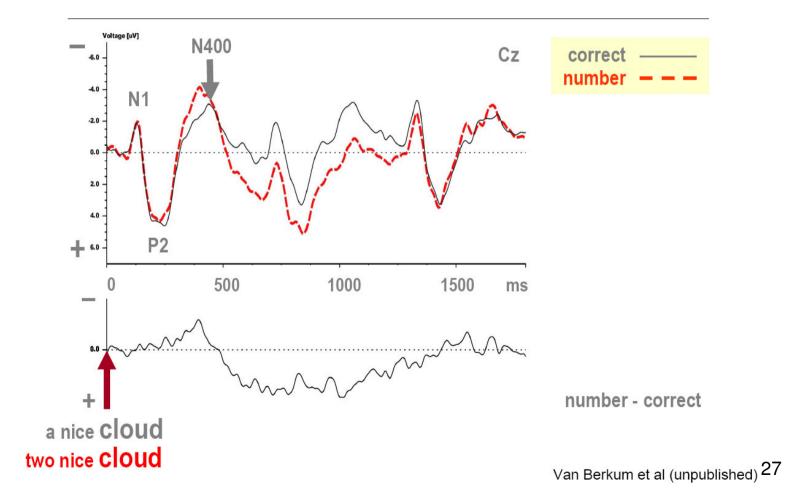
Methodology and Statistics

Compare: correct to incorrect

Event A: I saw a nice **cloud** on the horizon

Event B: I saw two nice **cloud** on the horizon

Methodology and Statistics


I saw a nice cloud on the horizon

- Average EEG segments
 - For all subjects
 - For all event types

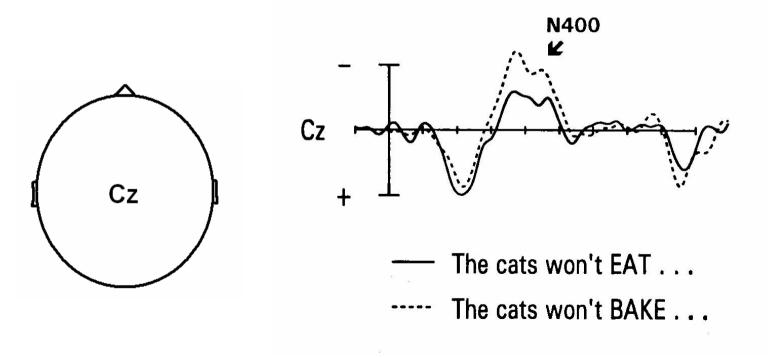
Result: ERP waveform associated with type A and type B

Number violation vs. correct control

What does this mean?

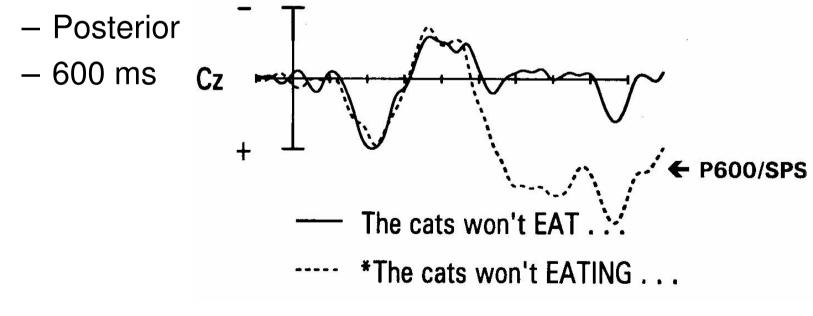
- Basic assumption: difficult condition
 elicits more activation
- Difference between two conditions reveals when the particular aspect (violation) is processed

This experiment

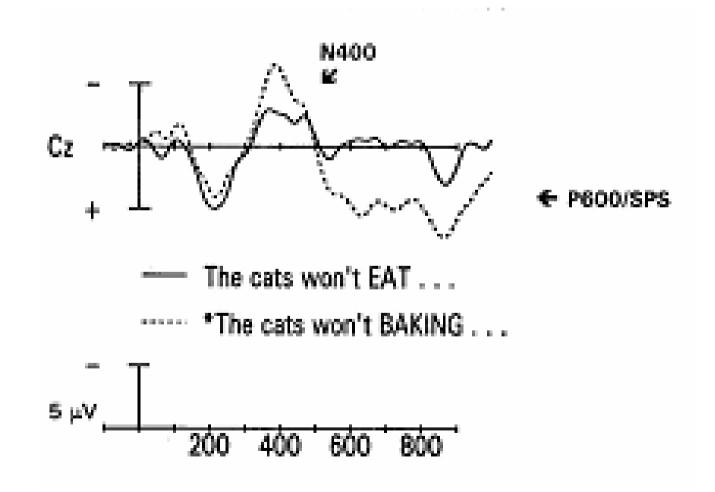

- Effect of word frequency
 High versus low
- Effect of grammaticality
 - Grammatical versus ungrammatical
- 2 x 2 design

Background: Frequency

- Behavioural:
 - RT: faster to high frequency words
 - Frequency facilitates processing
- ERP:
 - Negative peak at 400 ms for low frequency
 - Low frequency words are more difficult


N400 frequency effect

- Negativity for LF at 400 ms
- Related to semantic aspects
- Integration difficulty



Processing syntax

- Detection of violation: early negativity
 - Left frontal
 - 300 ms
- Repair/re-analysis of violation: late positivity

Semantics - Syntax

Present study

- ERP: time-line and stages of processing
- Violations of subject-verb agreement
 - '*he mow the lawn'
 - Detection point around 300 ms
 - P600 for repair/re-analysis
- Additional factor: lexical frequency
 - E.g. 'work' vs 'sway'
 - N400 for low frequency
- Interaction?

Methods

• 160 experimental sentences

Freq.	Gramm.	Example	
High	Correct	The scientist does not understand the new scales and he calls his wife for help.	
	Incorrect	The scientist does not understand the new scales and * he call his wife for help.	
Low	Correct	Marnix fell with his nose on the table and he halts the nose bleed with a tissue.	
	incorrect	Marnix fell with his nose on the table and * he halt the nose bleed with a tissue.	

Methods

- Matched on plausibility
- Matched on complexity
- Matched on frequency of surrounding words
- Matched on length of surrounding words
- Different lists
- Fillers: 224
- Questions in between

Methods

- 30 subjects
 - Age 18-26
 - Native Dutch
 - Right-handed
 - No neurological complaints
- In front of a screen
- Word by word presentation

Hypotheses

- Low frequency verbs will be more difficult to process compared to high frequency verbs → N400
- Ungrammatical verbs will elicit a repair/reanalysis process → P600
- High frequency ungrammatical verbs might be detected with greater ease than low frequency ungrammatical verbs (around 300 ms → LAN)

Statistical analysis

- Repeated measures ANOVA
 - Subjects are confronted with both grammaticality and frequency repeatedly
- Test equality of means
- Mean raw amplitude scores in SPSS

Data analysis

ile Ed	it View Data	a Transform	Analyze Graphs Utilities Wind	ow	Help			
⇒ □	🔒 匠 🔷	🔶 🗽 🕼	Reports Descriptive Statistics	* *				
	рр	hg	Tables	*	list	var	var	var
1	pp10-lijst1b	-2,91918	Compare Means	+	12			<u> </u>
2	pp11-lijst1b	1,31571	General Linear Model	•	Univar	iate		
3	pp12-lijst2b	1,79362	Mixed Models	•	Multiv	ariate		
4	pp13-2b	,31072	Correlate		Repeat	ted Measure	s	
5	pp14-lijst2b	1,01834	Regression					
6	pp15-lijst2b	-,79613	and the second		Varian	ce Compone	ents	
7	pp16-lijst2b	-,71384	Loglinear		22			-
8	pp17-lijst2a	-1,08599	Classify	*	21			
9	pp18-lijst1b	2,40183	Data Reduction	+	12			
10	pp19-lijst2a	-2,45424	Scale	•	21			
11	pp1-lijst1	,83666	Nonparametric Tests		11			
12	pp22-lijst1b	-,53542	Time Series		12			
13	pp23-lijst2a	,54042	Survival	+	21			
14	pp24-lijst2b	,40656			22			
15	pp25-lijst1a	2,58467	Multiple Response	*	11			
16	pp26-lijst1b	1,01424	Missing Value Analysis		12			
17	pp28-lijst2b	-,75442	Complex Samples	+	22			
18	pp29-lijst1a	-2,04768	,21411 -1,78190 -1,43083		11			

Methodology and Statistics

Data analysis

- Repeated measures or Within-Subject Factors:
 - Frequency (2)
 - Grammaticality (2)

mber of Levels:	thin-Subject	Factor Name:	Define
Add frequency(2) grammaticality(2) Help Change Help Remove Add			Reset
grammaticality(2) Change Remove asure Name: Add	mber of Leve	els:	Cance
Change Remove asure Name: Add	Add		Help
Add	Change]	
Add			
Change	Remove]	
	asure Name		

Data analysis

Between-Subjects Factor: List

∂a pp	Within-Subjects Variables (frequency, grammaticality):	OK Paste
	hg(1.1) ho(1.2) lg(2.1) lo(2.2)	Reset Cancel Help
	Between-Subjects Factor(s):	
	Covariates:	

Methodology and Statistics

What we expected:

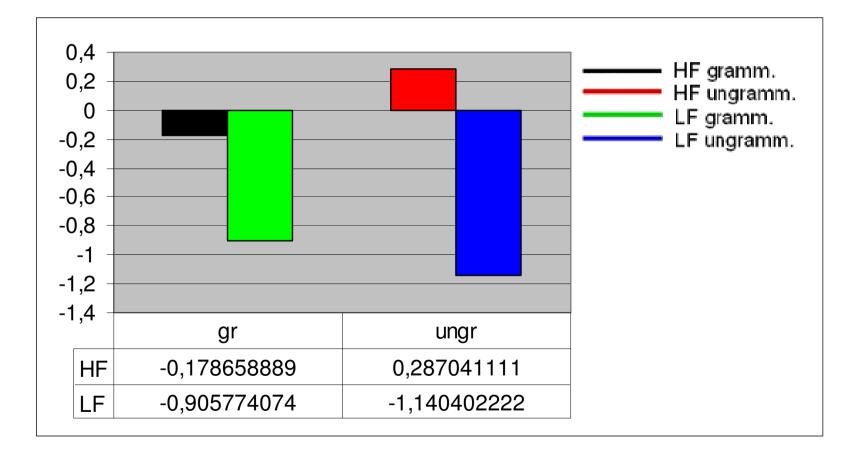
- Frequency effect \rightarrow N400
- Grammaticality effect \rightarrow P600
- Difference in detection \rightarrow interaction

Results: N400

Tests of Within-Subjects Contrasts

Measure: MEASURE_I							
Source	frequency	gramm	Type III Sum of Squares	df	Mean Square	F	Sig.
frequency	Linear	•	35,968	1	35,968	21,006	,000
frequency * list	Linear		1,472	3	,491	,287	,835
Error(frequency)	Linear		44,518	26	1,712		
gramm		Linear	,184	1	,184	,135	,716
gramm * list		Linear	1,856	3	,619	,455	,716
Error(gramm)		Linear	35,333	26	1,359		
frequency * gramm	Linear	Linear	4,593	1	4,593	3,095	,090
frequency * gramm * list	Linear	Linear	6,793	3	2,264	1,526	,231
Error(frequency*gramm)	Linear	Linear	38,580	26	1,484		

Measure: MEASURE 1


Results: N400

Tests of Within-Subjects Contrasts

Measure: MEASURE_1			Type III Sum				
Source	frequency	gramm	of Squares	df	Mean Square	F	Sig.
frequency	Linear		35,968	1	35,968	21,006	,000
frequency * list	Linear		1,472	3	,491	,287	,835
Error(frequency)	Linear		44,518	26	1,712		
gramm		Linear	,184	1	,184	,135	,716
gramm * list		Linear	1,856	3	,619	,455	,716
Error(gramm)		Linear	35,333	26	1,359		
frequency * gramm	Linear	Linear	4,593	1	4,593	3,095	,090
frequency * gramm * list	Linear	Linear	6,793	3	2,264	1,526	,231
Error(frequency*gramm)	Linear	Linear	38,580	26	1,484		

Measure: MEASURE 1

Results: N400

Results: P600

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source	frequency	gramm	Type III Sum of Squares	df	Mean Square	F	Sig.
frequency	Linear		,117	1	,117	,066	,800
frequency * list	Linear		3,314	3	1,105	,621	,608
Error(frequency)	Linear		46,273	26	1,780		
gramm		Linear	68,725	1	68,725	33,832	,000
gramm * list		Linear	2,138	3	,713	,351	,789
Error(gramm)		Linear	52,815	26	2,031		
frequency * gramm	Linear	Linear	5,924	1	5,924	6,321	,018
frequency * gramm * list	Linear	Linear	5,826	3	1,942	2,072	,128
Error(frequency*gramm)	Linear	Linear	24,367	26	,937		

Results: P600

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Source	frequency	gramm	Type III Sum of Squares	df	Mean Square	F	Sig.	
frequency	Linear		,117	1	,117	,066	,800	
frequency * list	Linear		3,314	3	1,105	,621	,608	
Error(frequency)	Linear		46,273	26	1,780			
gramm		Linear	68,725	1	68,725	33,832	,000	
gramm * list		Linear	2,138	3	,713	,351	,789	
Error(gramm)		Linear	52,815	26	2,031			
frequency * gramm	Linear	Linear	5,924	1	5,924	6,321	,018	
frequency * gramm * list	Linear	Linear	5,826	3	1,942	2,072	,128	
Error(frequency*gramm)	Linear	Linear	24,367	26	,937			

Interaction?

- The end-effect of the N400?
- Split up the time-windows:
 - 450-600 for the onset
 - -600-1000 for the 'real' P600
- Look at the effects separately

The 450-600 time-window

Tests of Within-Subjects Contrasts

Source	frequency	gramm	Type III Sum of Squares	df	Mean Square	F	Sig.
frequency	Linear		14,898	1	14,898	9,211	,005
frequency * list	Linear		2,612	3	,871	,538	,660
Error(frequency)	Linear		42,052	26	1,617		
gramm		Linear	5,863	1	5,863	3,407	,076
gramm * list		Linear	3,079	3	1,026	,596	,623
Error(gramm)		Linear	44,736	26	1,721		
frequency * gramm	Linear	Linear	10,228	1	10,228	6,706	,016
frequency * gramm * list	Linear	Linear	5,641	3	1,880	1,233	,318
Error(frequency*gramm)	Linear	Linear	39,656	26	1,525		

Monouro: MEAQUIDE 1

The 600-1000 time-window

Tests of Within-Subjects (Contrasts
----------------------------	-----------

Measure, MEAS							
Source	frequency	gramm	Type III Sum of Squares	df	Mean Square	F	Sig.
frequency	Linear		,117	1	,117	,066	,800
frequency * list	Linear		3,314	3	1,105	,621	,608
Error(frequency)	Linear		46,273	26	1,780		
gramm		Linear	68,725	1	68,725	33,832	.000
gramm * list		Linear	2,138	3	,713	,351	,789
Error(gramm)		Linear	52,815	26	2,031		
frequency * gramm	Linear	Linear	5,924	1	5,924	6,321	,018
frequency * gramm * list	Linear	Linear	5,826	3	1,942	2,072	,128
Error(frequency*gramm)	Linear	Linear	24,367	26	,937		

Measure: MEASURE_1

Methodology and Statistics

- We expected a difference in the detection around 300 ms
- Instead there seems to be a difference in the onset of the P600 (based on raw data)
- To find out what the onset difference is
 → separate ANOVA's for high and low
 frequency verbs

When only taking high frequency verbs: grammaticality effect

	dre. MEASORE_1	Type III Sum				
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
gramm	Sphericity Assumed	15,790	1	15,790	6,656	,016
	Greenhouse-Geisser	15,790	1,000	15,790	6,656	,016
	Huynh-Feldt	15,790	1,000	15,790	6,656	,016
	Lower-bound	15,790	1,000	15,790	6,656	,016
gramm * list	Sphericity Assumed	,245	3	,082	,034	,991
	Greenhouse-Geisser	,245	3,000	,082	,034	,991
	Huynh-Feldt	,245	3,000	,082	,034	,991
	Lower-bound	,245	3,000	,082	,034	,991
Error(gramm)	Sphericity Assumed	61,675	26	2,372		
	Greenhouse-Geisser	61,675	26,000	2,372		
	Huynh-Feldt	61,675	26,000	2,372		
	Lower-bound	61,675	26,000	2,372		

Measure: MEASURE 1

Tests of Within-Subjects Effects

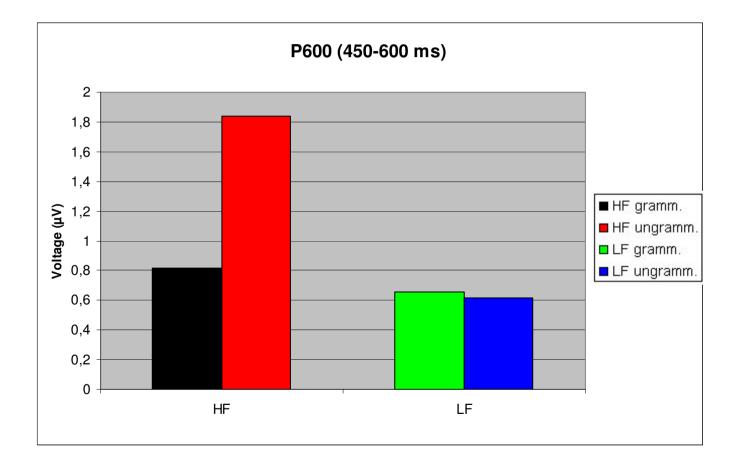
When only taking high frequency verbs: grammaticality effect

Measure: MEASURE 1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
gramm	Sphericity Assumed	15,790	1	15,790	6,656	,016
	Greenhouse-Geisser	15,790	1,000	15,790	6,656	,016
	Huynh-Feldt	15,790	1,000	15,790	6,656	,016
	Lower-bound	15,790	1,000	15,790	6,656	,016
gramm * list	Sphericity Assumed	,245	3	,082	,034	,991
	Greenhouse-Geisser	,245	3,000	,082	,034	,991
	Huynh-Feldt	,245	3,000	,082	,034	,991
	Lower-bound	,245	3,000	,082	,034	,991
Error(gramm)	Sphericity Assumed	61,675	26	2,372		
	Greenhouse-Geisser	61,675	26,000	2,372		
	Huynh-Feldt	61,675	26,000	2,372		
	Lower-bound	61,675	26,000	2,372		

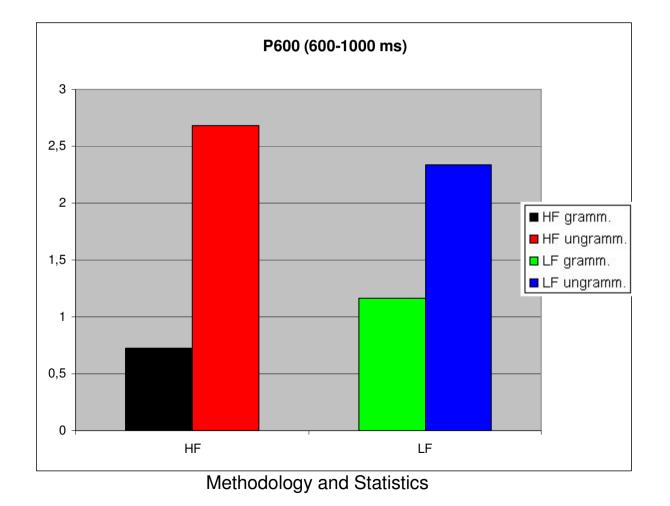
Tests of Within-Subjects Effects

When only taking low frequency verbs: NO grammaticality effect

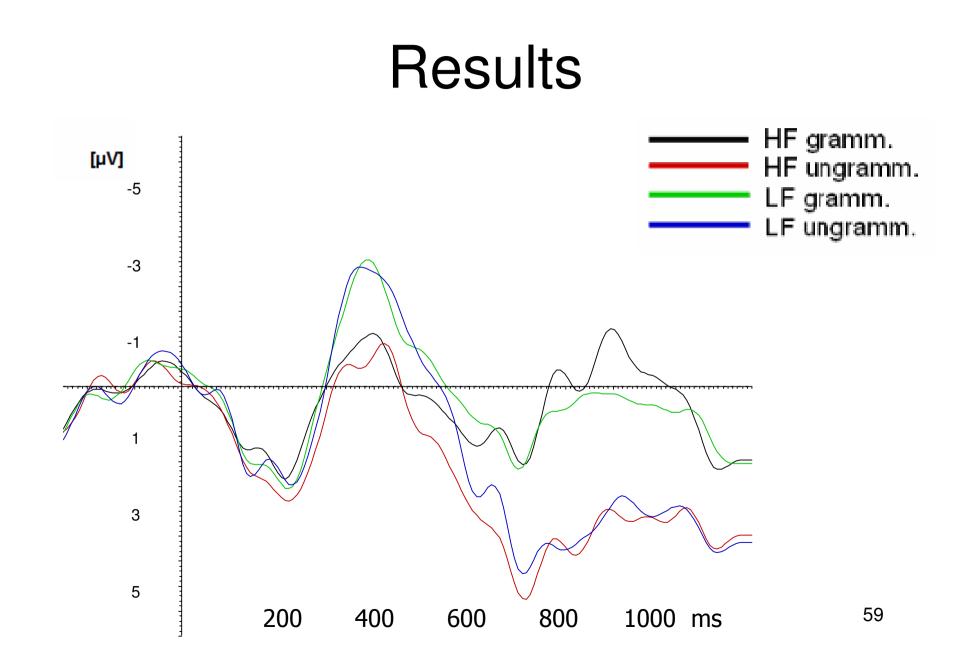

Measure: MEASURE 1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
gramm	Sphericity Assumed	,302	1	,302	,345	,562
	Greenhouse-Geisser	,302	1,000	,302	,345	,562
	Huynh-Feldt	,302	1,000	,302	,345	,562
	Lower-bound	,302	1,000	,302	,345	,562
gramm * list	Sphericity Assumed	8,474	3	2,825	3,233	,039
	Greenhouse-Geisser	8,474	3,000	2,825	3,233	,039
	Huynh-Feldt	8,474	3,000	2,825	3,233	,039
	Lower-bound	8,474	3,000	2,825	3,233	,039
Error(gramm)	Sphericity Assumed	22,717	26	,874		
	Greenhouse-Geisser	22,717	26,000	,874		
	Huynh-Feldt	22,717	26,000	,874		
	Lower-bound	22,717	26,000	,874		

Tests of Within-Subjects Effects


wetnodology and Statistics

The 'real' data


Methodology and Statistics

The 'real' data

Results

- When comparing high and low frequency
 - N400: negativity for low frequency
- When contrasting grammaticality
 - P600: positivity for ungrammatical
 - But: no early detection around 300 ms

Discussion: Why no detection?

- Due to rules of different languages
 - '(...) he mows/*mow the lawn'
 - '(...) hij roept/*hij roep (he calls/*call)
 - Word order issue?
- Due to strictness of violated rule
 - 'The scientist criticized Max's of proof...'
 - More obvious: earlier detection?

Conclusion

- Frequency and grammaticality elicit different brain responses
- High frequency verbs are more easily processed than low frequency verbs
- People initialize a repair process after 600 ms when confronted with subjectverb agreement violations

Conclusion

 The repair process can be initialized earlier when the ungrammatical verb is a high frequency one compared to a low frequency