university of groningen

Log-linear Modeling

Seminar in Methodology and Statistics
Edgar Weiffenbach (with Nick Ruiz)
S1422022
university of groningen

Overview

> Our project
> Log-linear modeling
> Log-linear modeling in the field
> Summary
> References

Our project

> The difference between size reading and gradable readig:

- That sure is a big ship. (size reading)
. He sure is a big idiot. (gradable reading)
university of groningen

Our project

> Lassy corpus
> Adjective+noun pairs
> Three adjectives:

- Reusachtig
- Gigantisch
. Kolossaal
> Three other variables
. Position in sentence (e.g.: subject, object)
- Determiner (definite/indefinite)
- Gradable/size reading
university of groningen

Our project

> Do these variables play a role in the choice between on of the the three adjectives?
university of groningen

Log-linear modeling

> A way of modeling the cell count of contingecy tables with categorical data (like Chi-square).
> No distinction between dependent and independent variables.
> Assumes Poisson-distributed data (like data obtained from a corpus).

Log-linear modeling

> Remember Chi-Square?

- $\mathrm{F}^{\mathrm{e}}=$ (row total x column total) / total

	Y Yes	No	total
$\begin{aligned} & \text { X } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ (37,5) \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & (22,5) \end{aligned}$	60
No	$\begin{array}{\|l\|} \hline 130 \\ (112,5) \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & (67,5) \end{aligned}$	180
total	150	90	240

Log-linear modeling

$>\mathrm{F}^{\mathrm{e}}=($ row total \times column total $) /$ total
$>F_{i j}{ }^{e}=\left(F_{i .}{ }^{0} \times F_{. j}{ }^{0}\right) / N$
> Log-linear modeling uses the natural logarithm (In) to transform the data. When using In, the following rules apply:

- $\ln (a \times b)=\ln a+\ln b$
- $\ln (a / b)=\ln a-\ln b$ groningen

Log-linear modeling

$>F_{i j}{ }^{e}=\left(F_{i .}{ }^{0} \times F_{. j}{ }^{0}\right) / N$
$>\ln \mathrm{F}_{\mathrm{ij}}{ }^{\mathrm{e}}=\ln \mathrm{F}_{\mathrm{i} .}{ }^{0}+\ln \mathrm{F}_{. j}{ }^{0}-\ln \mathrm{N}$
> "the terms which were originally multiplied are replaced by a linear combination of logarithmic terms: a log-linear model" (Rietveld \& van Hout: 1993)
university of groningen

Log-linear modeling

$$
\begin{aligned}
>F_{i j}{ }^{e} & =\left(F_{i .}{ }^{0} \times F_{. j}{ }^{\circ}\right) / N \\
& =(150 \times 180) / 240 \\
& =112,5
\end{aligned}
$$

$>\ln F_{i j}{ }^{e}=\ln F_{i .}{ }^{0}+\ln F_{. j}{ }^{0}-\ln N$

	Y Yes	No	total
X Yes	20 $(37,5)$	40 $(22,5)$	60
No	$\mathbf{1 3 0}$ $\mathbf{(1 1 2 , 5)}$	50 $(67,5)$	$\mathbf{1 8 0}$
total	$\mathbf{1 5 0}$	90	$\mathbf{2 4 0}$

$=\ln 150+\ln 180-\ln 240$

$$
=5.193+5.011-5.481=4.723
$$

$$
\mathrm{F}_{\mathrm{ij}} \mathrm{e}^{e}=e^{4.723} \text { (ANTILOG) }
$$

$$
=112.5
$$

Log-linear modeling

> Having transformed the data, you can now think of the contingency table as reflecting various main effects and interacting effects that are added together in a linear fashion to create the observed table of frequencies.
$>\operatorname{Ln} F_{i j}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{\mathrm{j}}^{\mathrm{B}}+\lambda_{\mathrm{jj}} \mathrm{AB}^{\mathrm{AB}}$

- $\mu=$ overall mean of the natural log of the expected frequencies
- $\lambda=$ represents an "effect" that the variable(s) has(/have) on the cell frequencies
- $A \& B=$ the variables
- i\&j = categories within the variables (rows \& columns)
university of groningen

Log-linear modeling

$>\operatorname{Ln} F_{i j}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{\mathrm{j}}^{\mathrm{B}}+\lambda_{\mathrm{jj}} \mathrm{AB}^{\mathrm{AB}}$

- $\mu=$ overall mean of the natural log of the expected frequencies
. $\lambda=$ represents an "effect" that the variable(s) has(/have) on the cell frequencies
- $\mathrm{A} \& \mathrm{~B}=$ the variables
- $i \& j=$ categories within the variables (rows $\&$ columns)
- $\lambda_{i}^{A}=$ main effect for variable A
- $\lambda_{j}^{B}=$ main effect for variable B
- $\lambda_{\mathrm{jj}} \mathrm{AB}^{\mathrm{AB}}=$ interaction effect for variables $\mathrm{A} \& \mathrm{~B}$
university of groningen

Log-linear modeling

> Remember:

- Log-linear modeling is a way of modeling the cell count of contingecy tables with categorical data.
$>\operatorname{Ln} F_{i j}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{\mathrm{j}}^{\mathrm{B}}+\lambda_{\mathrm{jj}}^{\mathrm{AB}}$
. Is called the "saturated model".
- It has as many effects as the contingency table has cells.
- Therefore it has no degrees of freedom
- So it fits the data perfectly ($\mathrm{F}^{\mathrm{e}}=\mathrm{F}^{\circ}$)
- But the data is a sample (=/= population), so the model overfits the data.

Log-linear modeling

> Fortunately the effects are combined additively, so it is easy to remove an effect and test if the model still fits the data.

- This is called the Model Selecting Log-linear Analysis.
- The goal is to find the most parsimonious (\approx simple) model that does not differ significantly from the saturated model (and thus from the observed frequencies).

Log-linear modeling

> Model Selecting Log-linear Analysis.

- Is mostly done hierarchicaly:
- $\quad \lambda_{j j}{ }^{A B}$ is made up out of λ_{i}^{A} and $\lambda_{j}{ }^{B}$, therefore $\lambda_{i}{ }^{A}$ and $\lambda_{j}{ }^{B}$ must be in the model when $\lambda_{j j}{ }^{A B}$ is.

	Backward deletion	$X^{2=}$
1.	$\operatorname{Ln} F_{i j}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{\mathrm{j}}^{\mathrm{B}}+\lambda_{\mathrm{jj}}{ }^{\mathrm{AB}}$	0
2.	$\operatorname{Ln~}_{\mathrm{ij}}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{\mathrm{j}}^{\mathrm{B}}$	$?$
3.	$\operatorname{Ln~}_{\mathrm{i}}{ }^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}$	$?$
4.	$\operatorname{Ln} \mathrm{~F}_{\mathrm{ij}}{ }^{\mathrm{e}}=\mu$	$?$

Log-linear modeling

> This may not be the best approach for a 2×2 contingency table, but it is a very easy statistic for analyzing tables with more dimensions.

- For instance a 3×3 contingency table
$-\underset{\lambda_{j j k}}{\operatorname{LnCC}} \mathrm{~F}_{i j}^{\mathrm{e}}=\mu+\lambda_{\mathrm{i}}^{\mathrm{A}}+\lambda_{j}^{\mathrm{B}}+\lambda_{k}^{\mathrm{C}}+\lambda_{\mathrm{jj}}^{\mathrm{AB}}+\lambda_{j k} \mathrm{AC}+\lambda_{j k} \mathrm{BC}+$
- Extra dimensions (variables) leed to a large increase in main and higherorder (=interactional) effects and with log-linear modeling you can easily find out which effects help create the observed frequencies and which can be left out of the model.

Log-linear modeling in the field

> De Haan \& van Hout - Statistics and Corpus Analysis: A Loglinear Analysis of Syntactic Constraints on Postmodifying Clauses (1986).
> Bell, Dirks, Levitt \& Dubno - Log-Linear Modeling of Consonant Confusion Data (1986).
> Girard \& Larmouth - Log-Linear Statistical Models: Explaining the Dynamics of Dialect Diffusion (1988).

Summary

> Log-linear modeling
. Is a way of modeling the cell count of contingecy tables with categorical data.

- Replaces originally multiplied terms by a linear combination of logarithmic terms.
- Tries to find the most parsimonious model that does not differ significantly from the saturated model.

References

> Toni Rietveld and Roeland van Hout (1993) Statistical Techniques for the Study of Language and Language Behavior. Mouton De Gruyter: Berlin.
> Alan Agresti (1996) An Introduction to Categorical Data Analysis. Wiley: New York.
> Ronald Christensen (1997) Log-Linear Models and Logistic Regression. Springer-Verlag: New York.

