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Entropy

̵ Entropy finds its origins from information theory and is used to

quantify information

̵ Intuitively, entropy quantifies the uncertainty involved when

encountering a random variable X

̵ The random variable X ranges over whatever we are predicting (e.g.

named entities, characters, etc)

̵ and has a particular probability function, call it p(x)
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Entropy

1 2

 -   Suppose we have a set of  whose probabilities of occurrence are 

      ( ), ( ),..., ( ) 

 -   We would like to measure how much uncertainty is associated with the

      

 -   Such a 

n

events

p x p x p x

events

measure, say ( ) (Shannon, 1948) should H x

     have the following properties

     1) ( ) should be continuous in the ( )

1
     2) If all the ( ) are equal, ( ) ,  then  should be a monotonic 

    

i

i i

H x p x

p x p x H
n

=

     increasing function of ( ) 

     3) If a choice is broken down into two successive choices, the original

         ( ) should be the weighted sum of the individual values of ( )

H x

H x H x
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Entropy

1

 -   The only ( ) satisfying the three above assumptions is of the form:

                      ( ) ( ) log ( )              

      where  is a positive constant.  ( ) is referred to as Entr

n

i i

i

H x

H x K p x p x

K H x

=

= − ∑

opy of the 

      probability distribution over the events      probability distribution over the events

 -    The choice of the logarithmic base will correspond to the choice

       of the unit for measuring information

 -     For a sequence of obse 1 2rvations { , ,..., },  we will be computing

       the entropy of the sequence

nS s s s=
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Entropy

1

1 2 1 1

-      For a sequence of characters in a string, we will be interested in the 

       entropy of observing the characters in the string

          ( , , ..., ) ( ) log ( )

       where  is 

n

n n

n

S A

H s s s p S p S

A

∈

= −∑

an alphabet of characters
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Cross Entropy (Jurafsky and Martin, 2009)

̵ Cross entropy is used to compare probability distributions

̵ It allows us to use some model m, which is a model of p (i.e., an

approximation to p)

̵ The cross entropy of two probability distributions p and m for a random

variable X is written as:
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( , ) ( ) lo g ( ( ) )i ii
H p m p x m x= −∑

̵ It should be noted that cross entropy is not a symmetric function

( , ) ( , )H p m H m p≠
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Cross Entropy (Jurafsky and Martin, 2009)

̵ The cross entropy H(p, m) is an upper bound on the true entropy H(p).

For any model m:

H(p) ≤ H(p, m)

- If p = m, the cross entropy is said to be at a minimum and

H(p, m) = H(p) .
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H(p, m) = H(p) .

- The closer the cross entropy H(p, m) is to the true entropy H(p), the

more accurate the model m (or the better m is an approximation of p)

- Cross entropy can therefore be used to compare approximate models

� Between two models m1 and m2, the more accurate model will be

the one with the lower cross entropy



Cross Entropy: Example

- The table below shows the actual probability distribution of a random

variable X and two approximate distributions m1 and m2 .

X x1 x2 x3 x4 x5

p 0.3 0.2 0.1 0.2 0.2
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p 0.3 0.2 0.1 0.2 0.2

m1 0.2 0.2 0.2 0.2 0.2

m2 0.3 0.1 0.1 0.1 0.4

� The entropy of X is ( ) ( ) log( ( )) 0 .672i ii
H p p x p x= − =∑

Table 1: Probability distribution of a random variable with two approximations 
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Cross Entropy: Example

� The cross entropy for m2 is:

2 2( , ) ( ) log( ( )) 0 .736i ii
H p m p x m x= − =∑

1 1( , ) ( ) log( ( )) 0 .699i ii
H p m p x m x= − =∑

� The cross entropy for m1 is:
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2 2( , ) ( ) log( ( )) 0 .736i ii
H p m p x m x= − =∑

� In this example, the uniform distribution m1 is better than m2 at

approximating the true distribution p

- The cross entropy becomes much more useful when we do not know

the actual (true) probability distribution .
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The case of a Language Grammar (Jurafsky and Martin, 2009)

0 1 2

 -   For a language grammar, we can be interested in the entropy of some 

     sequence of words { , , ,..., } 

 -   The entropy of a random variable that ranges over all finite sequences 

     of 

nW w w w w=

( )0 1 2 1 1

words of length  in some language  can be computed as:

                            ( , , , ..., ) ( ) log  n n

n

n L

H w w w w p W p W= − ∑ ( )
1

0 1 2 1 1                            ( , , , ..., ) ( ) log  

 -   For a number of words, we can have the entropy rate (per word entropy)

 

n

n

W L

H w w w w p W p W
∈

= − ∑

( )
1

1 1 1

    given as:

1 1
         ( ) ( ) log

 -   To measure the true entropy of a language we need to consider sequences

      of infinite length

             

n

n n n

W L

H W p W p W
n n ∈

= − ∑
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The case of a Language Grammar (Jurafsky and Martin, 2009)

1 2

 -   If a language is thought of as a stochastic process  that produces 

     a sequence of words, its entropy rate ( ) is defined as:

1
                 ( ) lim  ( , , ..., )

                  

n
n

L

H L

H L H w w w
n→∞

= −

1 2 1 2

1
       lim ( , , ..., ) log ( , , ..., )n n

n
p w w w p w w w

n→∞
= − 1 2 1 2

1 2

 -   If a language is stationary and ergodic, the Shannon-McMillan-

      Breiman theorem gives us:

1
                ( ) lim log ( , , ..., )

-   

n n
n

n
n

n

H L p w w w
n

→∞

→∞
= −

A language is stationary if the probability distribution of the words

    do not change with time. It is ergodic if its statistical properties can

    be deduced from a single, sufficiently long sequence of words
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The case of a Language Grammar (Jurafsky and Martin, 2009)

1 1

 -   The cross-entropy of  on  will be 

                

1
              ( , ) lim ( , ..., ) log ( , ..., )

 -   Note that this assumes that convergence will occur for an existing

n n
n

W L

m p

H p m p w w m w w
n→ ∞

∈

= − ∑

     limit

 -   Following the Shannon-M cM illann-Breiman theorem again, for a

     stationary ergodic language, the cross entropy of a real probability

     density function (.)  for estimating the probability distrm

1

ibution of 

     the langauge is written as:

1
               ( , ) lim log ( , ..., )

              

n
n

H p m m w w
n→ ∞

= −

12Statistics Seminar, Alfa Informatica, CLCG4th-03-2009



Cross Entropy for evaluating pair HMM Scoring 

algorithms

̵ A pair HMM has two observation sequences (s : t) as opposed to one

observation sequence in a standard HMM

j e f f e r s o n

Observation 

sequences

Sequence of edit 

Fig.1: Illustration of alignment for an english name “jefferson” and its Russian transliteration following the pair-HMM 
concept

̵ The pair HMM has been used in identification of matching bilingual entity

names for languages using different alphabets (English and Russian)

M Y M M M M M M M

д ж е ф ф е р с о

M

н

Sequence of edit 

operations 

(hidden states)

13Statistics Seminar, Alfa Informatica, CLCG4th-03-2009



Cross Entropy for evaluating pair HMM Scoring 

algorithms

̵ The pair HMM system takes in as input a pair of sequences and outputs a

similarity score for the input pair

̵ For obtaining similarity scores, two algorithms are used: the Forward and

Viterbi algorithm. The task is to identify which algorithm best estimates the

similarity between two stringssimilarity between two strings

̵ The cross entropy for the pair HMM on the probability of observing a pair

of sequences is given as:

1 2

1 1 1 1

,

( , ) ( : , ..., : ) log ( : , ..., : )T T T T

s A t A

H p m p s t s t m s t s t
∈ ∈

= − ∑
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̵ We draw the pairs of sequences according to the probability distribution p,

but sum the log of their probabilities according to m



Cross Entropy for evaluating pair HMM Scoring 

algorithms

̵ However, we do not have a target distribution. Instead, we have a corpus

that we can exploit in comparing at least two models

̵ The notion of corpus cross entropy (log probability) is used

� Given, a corpus C of size n consisting of tokens ci ,…,cn , the log

probability of a model m on this corpus is defined as:
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probability of a model m on this corpus is defined as:

( ) (1 / ) * log ( ))C ii
H m n m c= − ∑

where summation is done over tokens in the corpus

- It can be proven that as n tends to infinity, the corpus cross entropy

becomes the cross entropy for the true distribution that generated the

corpus
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Cross Entropy for evaluating pair HMM Scoring 

algorithms

� To prove the equivalence of the corpus cross entropy with the true cross

entropy, it must be assumed that the corpus has a stationary distribution.

� The proof depends on the fact that the Maximum Likelihood Estimation

goes to the true probability distribution as the size of the corpus goes to

infinity
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- It is not exactly correct to use the result for cross entropy in NLP applications

because the above assumption is clearly wrong for languages (Manning and

Schutze, 2001)

- Nonetheless, for a given corpus, we can assume that a language is near

enough to unchanging. This will be an acceptable approximation to truth

(Askari, 2006)



Cross Entropy for evaluating pair HMM Scoring 

algorithms

-   For the case o f the pair H M M , the co rpus com prises  o f pairs  o f

    en tity nam es

-    W e consider each  pair o f nam es ( : ) to  be a  token   in  the 

     co rpus

-    T herefo re, the log  p robab ility o f 

i i

i
s t c

a pair H M M  algorithm   on  m

1

      the co rpus can  be w ritten  as:

                    ( ) (1 / ) * log( ( : ))

     w here ( : )  is  the estim ated  p robab ility accord ing  to  a  

      m odel fo r the pai

n
i i

C

i

i i

H m n m s t

m s t

m

=

= − ∑

r o f nam es ( : )i i
s t
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Cross Entropy for evaluating pair HMM Scoring 

algorithms

-    It is also possible to consider character alignments to constitute

     tokens in the corpus

-    In that sense, ( : ) will be the  character alignment in the 

     corpus

-    Estimating charac

i i th
s t i

ter alignment probabilities can only be 
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     possible if the corpus comprises aligned characters, moreover 

     manually corrected 

-    In either of the cases above (i.e whether character alignments or

     pairs of entity names are used), it is important to see whether there

     is any chance of the log probability convergin with increase in 

     corpus size (See figure 2. on the next slide for pair HM M )



Variation of Corpus Cross Entropy with corpus size n

for two pair HMM scoring algorithms
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Fig.2: Variation of Corpus Cross Entropy with corpus size n (of entity name pairs) for the Forward

algorithm (blue) and Viterbi algorithm (red)



Cross Entropy for evaluating pair HMM Scoring 

algorithms

̵ Table 1 shows Corpus Cross Entropy (CCE) for two algorithms: Viterbi and

Forward on a corpus size of 1000 pairs of English-Russian entity names

Algorithm Name-pair CCE (for n = 1000

Viterbi 26.4132
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Table 1: Cross Entropy results for English-Russian matching entity names

̵ The Corpus Cross Entropy results suggest that the Forward algorithm is

slightly more accurate than the Viterbi algorithm

4th-03-2009

Viterbi 26.4132

Forward 25.1951
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