groningen

Principal Component Analysis
 Seminar in Methodology and Statistics

Nafid Haque
EM-LCT
N.Haquedstudent.rug.nl groningen

Outline

, What is PCA?
> Steps for performing PCA
> Conclusion
> Discussion groningen

What is PCA?

> A statistical method for exploring and making sense of datasets
> It is used to 'summarize' the data (not to 'cluster' data)
, Only used for linear data
> Its goal is to reduce the dimensionality of the original data set

 groningen

Original PCA data

Mean adjusted data with eigenvectors overlayed

The steps to carry out PCA on a dataset

> Step 1: Get some data
, Step 2: Normalize/Adjust the data (Subtract the mean)
> Step 3: Calculate the covariance matrix
> Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix
> Step 5: Choosing components and forming a feature vector
, Step 6: Deriving the new dataset

Step 1: Get some data

\mathbf{X}	\mathbf{Y}
2.50	2.40
0.50	0.70
	2.20
1.90	2.90
3.10	2.20
2.30	3.00
2.00	2.70
1.00	1.60
1.10	1.10

Step 2: Normalize/Adjust the data (Subtract the mean)

\mathbf{X}	\mathbf{Y}	$\mathbf{X}_{\mathbf{i}}-\mathbf{X}_{\mathbf{m}}$	$\mathbf{Y}_{\mathrm{i}}-\mathbf{Y}_{\mathbf{m}}$
2.50	2.40	0.69	0.49
0.50	0.70	-1.31	-1.21
2.20	2.90	0.39	0.99
1.90	2.20	0.09	0.29
3.10	3.00	1.29	1.09
2.30	2.70	0.49	0.79
2.00	1.60	0.19	-0.31
1.00	1.10	-0.81	-0.81
1.10	1.60	-0.31	-0.31
18.10	0.90	-0.71	-1.01
1.81	19.10	0.00	0.00

Step 3: Calculate the covariance matrix
> Covariance is

- How two variables change with respect to each other (so 2 dimensions)
- (Variance operate only on 1 dimension)
- We have 2 dimensional data so we need to calculate cov (X,Y) groningen

Step 3.1 (a): How to calculate $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$
, Variance

$$
\operatorname{var}(X)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}{(n-1)}
$$

, Covariance

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{(n-1)}
$$

Step 3.1 (b): How to calculate cov (X,Y)

X	Y	X_{i} - X_{m}	(Xi-Xm)(Xi-Xm)	$Y_{i}-Y_{m}$	(Yi-Ym)(Yi-Ym)	(Xi-Xm)(Yi-Ym)
2.50	2.40	0.69	0.48	0.49	0.24	0.34
0.50	0.70	-1.31	1.72	-1.21	1.46	1.59
2.20	2.90	0.39	0.15	0.99	0.98	0.39
1.90	2.20	0.09	0.01	0.29	0.08	0.03
3.10	3.00	1.29	1.66	1.09	1.19	1.41
2.30	2.70	0.49	0.24	0.79	0.62	0.39
2.00	1.60	0.19	0.04	-0.31	0.10	-0.06
1.00	1.10	-0.81	0.66	-0.81	0.66	0.66
1.50	1.60	-0.31	0.10	-0.31	0.10	0.10
1.10	0.90	-0.71	0.50	-1.01	1.02	0.72
18.10	19.10	0.00	5.55	0.00	6.45	5.54
1.81	1.91	0.00	0.62	0.00	0.72	0.62

Step 3.2 (a): How to find the covariance matrix

$$
C=\left(\begin{array}{ccc}
\operatorname{cov}(x, x) & \operatorname{cov}(x, y) & \operatorname{cov}(x, z) \\
\operatorname{cov}(y, x) & \operatorname{cov}(y, y) & \operatorname{cov}(y, z) \\
\operatorname{cov}(x, x) & \operatorname{cov}(z, y) & \operatorname{cov}(z, z)
\end{array}\right)
$$

Step 3.2 (b): How to find the covariance matrix

X	Y	$\mathrm{X}_{\mathrm{i}} \mathbf{-} \mathrm{X}_{\mathrm{m}}$	(Xi-Xm)(Xi-Xm)	$Y_{i}-Y_{m}$	(Yi-Ym)(Yi-Ym)	(Xi-Xm)(Yi-Ym)
2.50	2.40	0.69	0.48	0.49	0.24	0.34
0.50	0.70	-1.31	1.72	-1.21	1.46	1.59
2.20	2.90	0.39	0.15	0.99	0.98	0.39
1.90	2.20	0.09	0.01	0.29	0.08	0.03
3.10	3.00	1.29	1.66	1.09	1.19	1.41
2.30	2.70	0.49	0.24	0.79	0.62	0.39
2.00	1.60	0.19	0.04	-0.31	0.10	-0.06
1.00	1.10	-0.81	0.66	-0.81	0.66	0.66
1.50	1.60	-0.31	0.10	-0.31	0.10	0.10
1.10	0.90	-0.71	0.50	-1.01	1.02	0.72
18.10	19.10	0.00		0.00		
1.81	1.91	0.00	0.62	0.00	0.72	0.62

Step 3.2 (c): How to find the covariance matrix

$$
\operatorname{cov}=\left(\begin{array}{ll}
.616555556 & .615444444 \\
.615444444 & .716555556
\end{array}\right)
$$

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix

Let A be an $n \times n$ matrix. The number λ is an eigenvalue of A if there exists a non-zero vector v such that

$$
A \mathrm{v}=\lambda \mathrm{v} .
$$

In this case, vector v is called an eigenvector of A corresponding to λ. groningen

Step 4.1 (a): Examples of eigenvectors and eigenvalues

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \times\binom{ 1}{3}=\binom{11}{5} \\
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \times\binom{ 3}{2}=\binom{12}{8}=4 \times\binom{ 3}{2} \\
\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \times\binom{ 6}{4}=\binom{24}{16}=4 \times\binom{ 6}{4}
\end{gathered}
$$

Example of one non-eigenvector and one eigenvector

Step 4.1 (b): How to compute the eigenvectors and eigenvalues

We can rewrite the condition $A \mathbf{v}=\lambda \mathbf{v}$ as

$$
(A-\lambda I) \mathbf{v}=0 .
$$

where I is the $n \times n$ identity matrix. Now, in order for a non-zero vector v to satisfy this equation, $A-\lambda I$ must not be invertible.
That is, the determinant of $A-\lambda I$ must equal 0 . We call $p(\lambda)=\operatorname{det}(A-\lambda I)$ the characteristic polynomial of A. The eigenvalues of A are simply the roots of the characteristic polynomial of A.

university of

 groningen
Step 4.1.1 : What is a determinant of a matrix?

> For 2 by 2,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \operatorname{det}(A)=a d-b c
$$

> For 3 by 3,

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] . \quad \begin{aligned}
\operatorname{det}(A) & =a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a e i-a f h-b d i+b f g+c d h-c e g \\
& =(a e i+b f g+c d h)-(g e c+h f a+i d b)
\end{aligned}
$$

university of

 groningen
Step 4.2 : Finally the eigenvectors and the eigenvalues for our example

$$
\text { eigenvalues }=\left(\frac{0490833989}{1.28402771}\right)
$$

Step 5: Choosing components and forming a feature vector

$$
\text { FeatureVector }=\left(\text { eig }_{1} \text { eig }_{2} \text { eig }_{3} \ldots . . \text { eig }_{n}\right)
$$

Given our example set of data, and the fact that we have 2 eigenvectors, we have two choices. We can either form a feature vector with both of the eigenvectors:

$$
\left(\begin{array}{cc}
-.677873399 & -.735178656 \\
-.735178656 & .677873399
\end{array}\right)
$$

or, we can choose to leave out the smaller, less significant component and only have a single column:

$$
\binom{-.677873399}{-.735178656}
$$

Step 6: Deriving the new dataset

$$
\text { FinalData }=\text { Row FeatureVector } \times \text { RowDataAdjinst, }
$$

where Row FeatureVector is the matrix with the eigenrectors in the columns transposed so that the eigenrectors are now in the fows, with the most sigifificant eigenrector a the top, and RowDataAdjust is the mearnadjucsted data tronsposed, ie. the data items are in each columm, with each tow hod ding a sepparate dimension.

Step 6.1 (a): Deriving the new dataset

	x	y
	-. 827970186	-. 175115307
	1.77758033	. 142857227
	-. 992197494	. 384374989
	-. 274210416	. 130417207
Transformed Data=	-1.67580142	-. 209498461
	-. 912949103	. 175282444
	. 0991094375	-. 349824698
	1.14457216	. 0464172582
	. 438046137	. 0177646297
	1.22382056	-. 162675287

Step 6.1 (b): Deriving the new dataset
 Data transformed with 2 eigenvectors

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors, and a plot of the new data points.

Conclusion (1)

> So PCA gives new variables (dimensions) that are linear combination of the original ones
> The new variables are derived in decreasing order of importance
> How many PCs to keep?

- Enough to keep a cumulative variance explained by the PCs
- (Kaiser Criterion- keep PCs>1)
- (Scree plot)

Conclusion (2)

> PCA is basically useful for finding new, more informative, uncorrelated features
, PCA reduces dimensionality by rejecting low variance features

References:

> Ahmed Rebai, Presentation of PCA-ICA
> Harvey Mudd College Math Tutorial: Eigenvalues and Eigenvectors
, Lindsay I Smith, A tutorial on Principal Components Analysis
> Giorgos Korfiatis, Presentation of PCA

