Oscar Strik : May 17th 2011

Move over ANOVA?

Aspects of analysing longitudinal data with Repeated Measures ANOVA and Mixed Models Regression

Oscar Strik

Seminar on Statistics and Methodology May 17th 2011

Outline

- Introduction:
 - Recap: Repeated Measures ANOVA
 - Recap: Mixed-effect Regression Models
- Categorical Data
- Akaike Information Criterion
- Comparison and Summary

Repeated Measures ANOVA

- Same assumptions as regular ANOVA, only samples are not independent
- Particularly suited for longitudinal studies where change through time is the main subject of research
- Main difference with regular ANOVA is partitioning of variance
 - SSE is divided into a within-subjects (SSS) and amongsubjects part
 - The within-subjects differences are removed from SSE

Mixed Models

- Multiple regression models look for the best fitting formula, i.e. the combination of effects for each variable that best fits the observed data
- Mixed Models distinguish between random-effect and fixed-effect factors
- In longitudinal studies, time can be one of the independent variables

Some previously mentioned issues

- Use of Repeated Measures ANOVA on categorical data
- Akaike Information Criterion

Oscar Strik : May 17th 2011

Categorical Data

- Categorical data:
 - ANOVA Confidence intervals may extend into non-existent ranges
 - This underestimates the probability of existent values

Mean accuracy scores per condition

AIC

- Using Mixed-effects Regression Models, adding additional random factors is relatively easy
 - Will always lead to a better fit, but at the cost of adding complexity
- We can use the *Akaike Information Criterion* (AIC), to evaluate whether adding particular random effects is beneficial to the overall model

AIC

- AIC is a function of the amount of parameters used, and the fit of the model
 - Lower result = better fit, given the amount of parameters

• In Ruggero's mixed models analysis, we can see this progression:

AIC

	Df	AIC	BIC	logLik	Chisq Chi	Df	Pr(>Chisq)
mmodel1	18	449.24	562.55	-206.62			
mmodel2	19	286.84	406.45	-124.42	164.3964	1	<2e-16 ***
mmodel4	21	290.79	422.98	-124.39	0.0567	2	0.9720
mmodel5	21	271.20	403.39	-114.60	19.5866	0	<2e-16 ***
mmodel3	28	275.32	451.58	-109.66	9.8796	7	0.1955

mmodel2 19 286.84 406.45 -124.42

mmodel5 21 271.20 403.39 -114.60 19.643 2 5.426e-05 ***

AIC

	Df	AIC	BIC	logLik	Chisq	Chi	Df	Pr(>Chisq)	
mmodel5	21	271.2	403.39	-114.6					
mmodel6	22	273.2	411.69	-114.6	0		1	0.9991	
mmodel5	21	271.20	403.39	9 -114.6	50				

mmodel7 22 249.23 387.72 -102.62 23.966 1 9.804e-07 ***

AIC

	Df	AIC	BIC	logLik	Chisq	Chi	Df	Pr(>Chisq)	
mmodel8	23	-31.656	113.13	38.828					
mmodel10	24	-51.621	99.46	49.810	21.965		1	2.777e-06 ***	
mmodel11	25	-52.813	104.56	51.407					

mmodel12 26 -54.469 109.20 53.234 3.6555 1 0.05588.

AIC

- In short: the AIC is one way to answer Ruggero's question: «Where is it convenient to stop?»
- There are also related measures for model fit:
 - Bayesian Information Criterion
 - AICc: takes into account sample size

Comparison / Summary

- Aspects of Repeated Measures ANOVA:
 - Does not deal well with missing values
 - sometimes subjects have to be dropped due to this, which introduces the possibility of sample bias
 - Observations need to be made at the same time points for each subject
 - Requires tests for conditions of *sphericity*
 - Leads to spurious results for categorical outcomes
 - confidence intervals may extend beyond interpretable ranges

Comparison / Summary

- Aspects of Mixed-effects regression:
 - Can use all available data points
 - not affected by *randomly* missing data
 - can model time effects
 - Can handle both covariates that change over time, and static covariates
 - Can be relatively difficult to implement
 - though see Wieling's presentation
 - Does not work very well on small samples

Comparison / Summary

- Aspects of Mixed-effects regression:
 - Easy to add extra random factors
 - Testable how these factors affect the fit of the model using AIC

When to use which method?

- Mixed Models:
 - missing data
 - irregular time points
 - modest to large samples
 - categorical outcomes

- RM ANOVA:
 - complete data
 - regular time points
 - small samples
 - assumptions of normality and sphericity satisfied

When to use which method?

method	data missing?		time points		sar	categorical data	
	yes	no	regular	irregular	small	small medium to large	
Mixed Models							
RM ANOVA							

Oscar Strik : May 17th 2011

References

- Baayen, R.H. & D.J. Davidson & D.M. Bates (2008). "Mixed-effects modeling with crossed random effects for subjects and items." In: *Journal of Memory and Language* 59. pp. 390-412.
- Blackwell, Ekin & Carlos F. Mendes de Leon & Gregory E. Miller (2006). "Applying Mixed Regression Models to the Analysis of Repeated-Measures Data in Psychosomatic Medicine. In: *Psychosomatic Medicine* 68. pp. 870-878.
- Gueorguieva, Ralitza & John H. Krystal (2004). "Move Over ANOVA". Progress in Analyzing Repeated-Measures Data and Its Reflection in Papers Published in the *Archives of General Psychiatry*. In: *Archives of General Psychiatry* 61. pp. 310-317.
- Jaeger, T. Florian (2008). "Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models." In: *Journal of Memory and Language* 59. pp. 434-446.
- Krueger, Charlene & Lili Tian (2004). "A Comparison of the General Linear Mixed Model and Repeated Measures ANOVA Using a Dataset with Multiple Missing Data Points." In: *Biological Research for Nursing* 6. pp. 151-157. 18/18