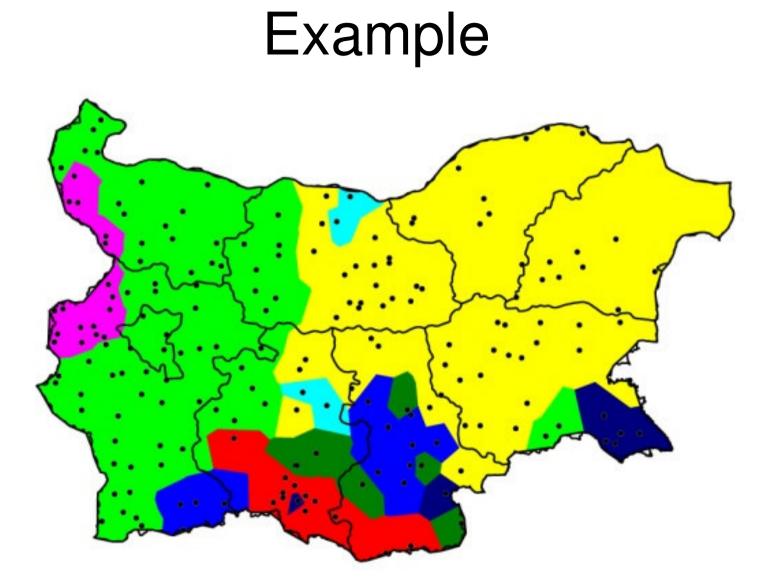
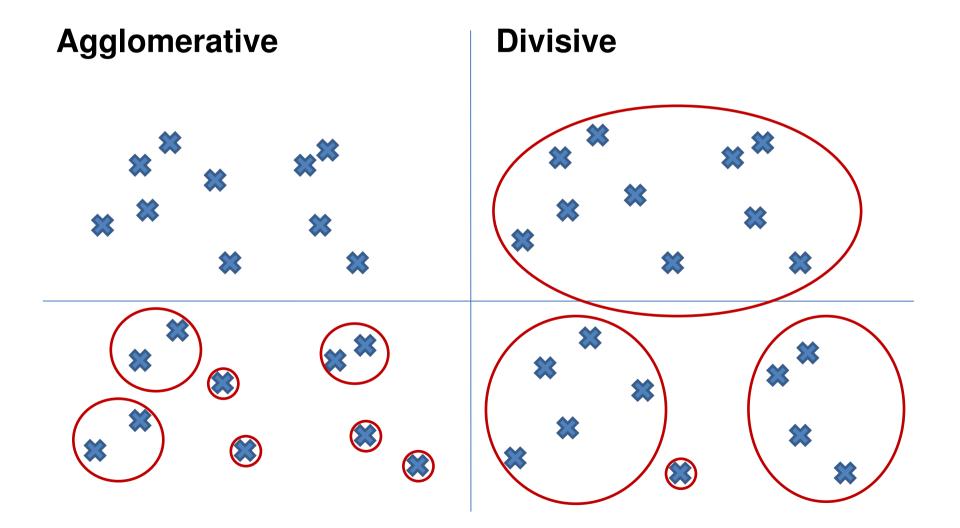
Clustering


Sandrien van Ommen

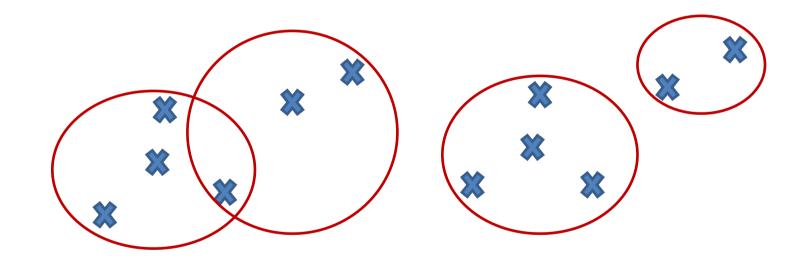
Overview

- Why clustering
- When clustering
- Types of clustering
- Dialects
 - Distances
 - Dutch towns
 - Buldialect
- Conclusion

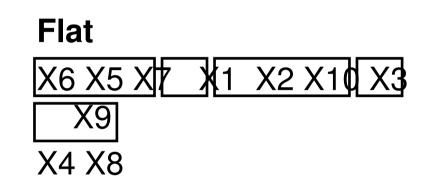
Why clustering

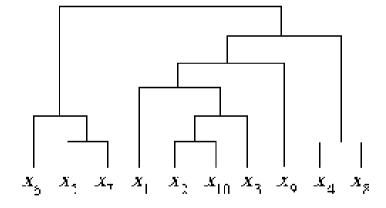

- To find similarity in your data
 - T-test & Anova = means
 - Correlation & regression = effect size
 - Chi-square = frequencies
 - PCA = summarizing data
 - Clustering = grouping data on basis of similarity

When clustering

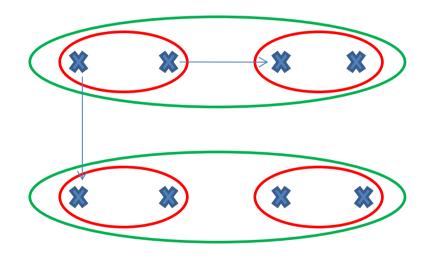

- Market research: determining populations
- Biology: group gene families
- Social Network Analysis
- Linguistics:
 - Dialect differences/-areas
 - 'neighborhoods' in semantics/syntax/phonology
 - Language models

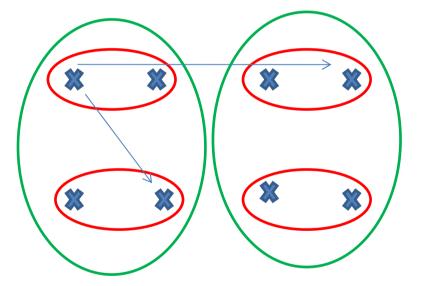
- Agglomerative- / Divisive clustering
- Soft (disjunctive)- / Hard clustering
- Hierarchical- /Non- hierarchical (flat) clustering
- Single-link vs. Complete-link clustering



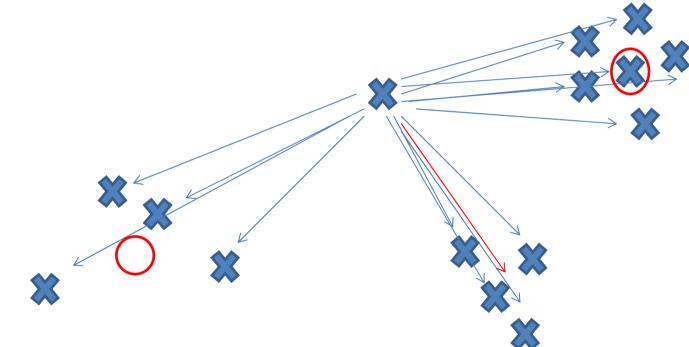


Hard


Hierarchical



Single-link


Complete-link

- Single link: $d_{k[ij]} = min(d_{ki}; d_{kj})$
- Complete link: $d_{k[ij]} = max(d_{ki}; d_{kj})$
- UPGMA (unweighted pair group method using arithmetic averages):
 - $\begin{array}{l} \, d_{k[ij]} = ((\, n_i \, / \, (n_i + n_j \,)) \, x \, d_{ki} \,) + ((n_j \, / \, (n_i + n_j \,)) \, x \\ d_{kj} \,) \end{array}$
- WPGMA (weighted):
 - $-d_{k[ij]} = (1/2 \times d_{ki}) + (1/2 \times d_{kj})$

• Group average, centroids, medoids

- Centroids:
 - UPGMC
 - $d_{k[ij]} = ((n_i / (n_i + n_j)) \times d_{ki}) + ((n_j / (n_i + n_j)) \times d_{kj}) ((n_i \times n_j) / (n_i + n_j)^2 \times d_{ij})$
 - WPGMC
 - $d_{k[ij]} = (1/2 \times d_{ki}) + (1/2 \times d_{kj}) (1/4 \times d_{ij})$

Flat:

- K-means
- L1
- The EM algorithm (soft, iterative)

- Make use of centroids (or medoids)

- Clustering = grouping data based on similarity
- Similarity is calculated based on distance
 -s(x,y) = 1 / (1 + d(x,y))
- for grouping dialects: calculate distances
 - Sequence comparison (pronunciation distance)
 - Average pronunciation distance between villages

- Sequence comparison:
 - Levenshtein Distance
 - Based on 'string-changing operations'
 - Deletions, insertions, substitions
 - Weight assigned to each operation
 - Calculation of the minimum cost

Hamming Distance:

Levenshtein Distance:

æ	ə	f	t	ə	n	u	n
æ	f	t	ə	r	n	\mathbf{u}	n
	1	1	1	1		1	

æəftənʉn	delete ə	1
æftənʉn	insert r	1
æftərnʉn	subst. u/u	1
æftərnun		

3

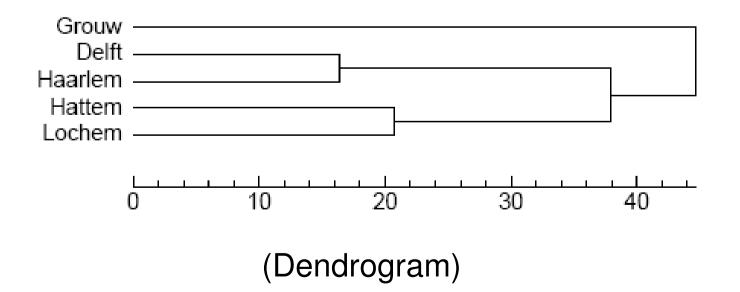
Distance Matrix

		Ø	æ	ə	f	t	ə	n	ŧ	n
		0	1	2	3	4	5	6	7	8
Ø	0									
		0	1 1	2 2	3 3	4 4	5 5	6 6	7 7	8 8
æ	1	1	$0 \ 2$	2 3	3 4	4 5	$5 \ 6$	6 7	78	8 9
		1	$2 \ 0$	1 1	2 2	3 3	4 4	5 5	6 6	7 7
f	2	2	$2 \ 1$	1 2	1 3	3 4	4 5	56	6 7	78
		2	$3 \ 1$	$2 \ 1$	2 1	2 2	3 3	4 4	5 5	6 6
t	3	3	3 2	2 2	2 2	$1 \ 3$	3 4	4 5	56	6 7
		3	4 2	3 2	3 2	$3 \ 1$	2 2	3 3	4 4	55
ə	4	4	4 3	2 3	3 3	$3 \ 2$	1 3	3 4	4 5	56
		4	5 3	4 2	3 3	4 2	$3 \ 1$	2 2	3 3	4 4
r	5	5	5 4	4 3	3 4	4 3	$3 \ 2$	2 3	3 4	4 5
		5	64	5 3	4 3	4 3	4 2	3 2	3 3	4 4
n	6	6	65	5 4	4 4	4 4	4 3	2 3	3 4	3 5
		6	$7 \ 5$	6 4	$5 \ 4$	5 4	5 3	4 2	3 3	4 3
u	7	7	76	65	5 5	5 5	$5 \ 4$	4 3	3 4	4 4
		7	8 6	75	6 5	6 5	6 4	5 3	4 3	4 4
n	8	8	8 7	76	6 6	6 6	65	$5 \ 4$	4 4	3 5
		8	9 7	8 6	76	76	7 5	6 4	5 4	5 3

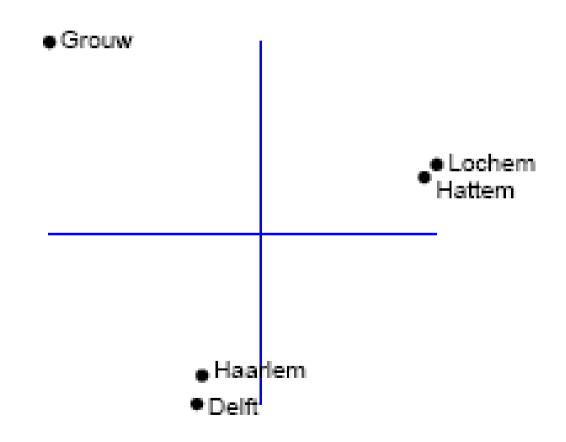
Alignment

		Ø	æ	ə	f	t	ə	n	ŧ	n
		0	1	2	3	4	5	6	7	8
Ø	0	0	<i>—</i>	~	<i>—</i>	<i>~</i>	~~	~~	<u> </u>	<i>~</i>
æ	1	1	<u>х</u> 0	$\leftarrow 1$	←	←	←	←	←	<i>—</i>
f	2	Ť	Ť	~	<u>\</u> 1	←	←	←	\leftarrow	←
t	3	Î	Ť	\checkmark	←	۲ 1	←	←	\downarrow	\leftarrow
e	4	Ŷ	Ť	~	t ∕ →	ſ	1	←	←	\downarrow
r	5	Ŷ	Ť	ſ	~	ſ	$\uparrow 2$	~	V I	† >
n	6	Ť	Ť	ſ	ŕ	∧ ↑	Ť	× 2	1	~
u	7	Î	Ť	Ť	∧ ↑	∧ ↑	1	1	× 3	× ↑
n	8	Ŷ	Ť	Ť	ŕ	∧ ↑	†	†	\checkmark	<u>∖</u> 3

- 5 Dutch towns
- Data collected, transcribed, distances computed


	Grouw	Haarlem	Delft	Hattem	Lochem
Grouw		42	44	46	47
Haarlem			16	36	38
Delft				38	40
Hattem					21
Lochem					

Group-average agglomerative Clustering


$$d_{k[ij]} = \frac{d_{ki} + d_{kj}}{2}$$

 $d_{Grouw, [Haarlem \& Delft]} = \frac{d_{Grouw, Haarlem} + d_{Grouw, Delft}}{2}$ $= \frac{42 + 44}{2}$

	Grouw	Haarlem & Delft	Hattem	Lochem
Grouw		43	46	47
Haarlem & Delft			37	39
Hattem				21
Lochem				

MultiDimensional Scaling (MDS)

- The data: from project: "Buldialect: Measuring linguistic unity and diversity in Europe"
 - Levenshtein Distance: What is the minimum cost?
 - Deletions/insertions
 - Substitutions
 - Vowel-vowel and consonant-consonant alignment
 - 156 word pronunciations
 - 197 villages in Bulgaria

Buldialect

- Dialect distances between villages = Average of all distances in pronunciation
- Many objects!
 - Distances in pronunciation
 - -> distances between villages

(n x (n-1)) / 2 = values

 $> (197 \times (197-1))/2 = 19306$ distance values

Buldialect

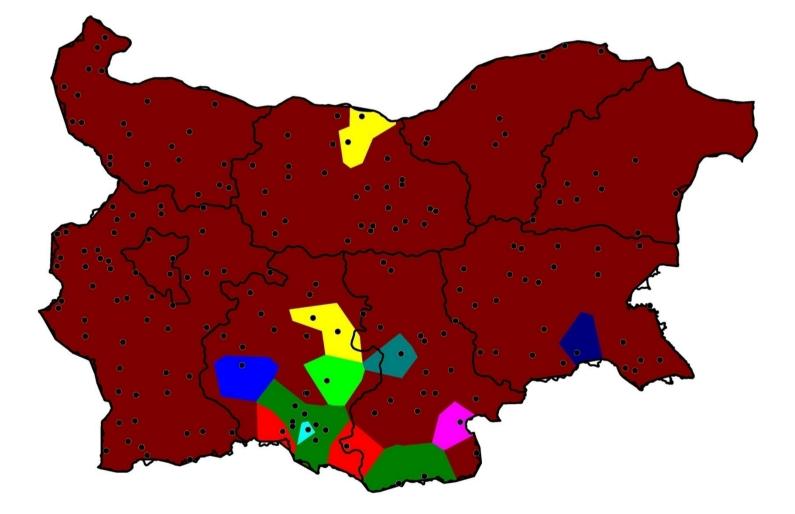
- Let's try some of the different methods
 - Single link
 - Complete link
 - UPGMA
 - WPGMA
 - -(MDS)

Ways to view results

- Dendrograms
- Maps

Single-link

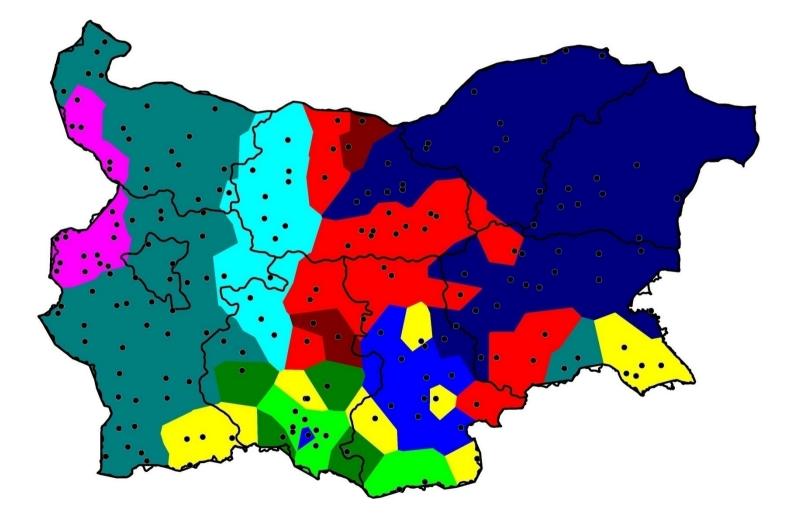
Dendrogram


Space contracting

- Unequally sized clusters
- Outliers visible

Single-link

Single-link

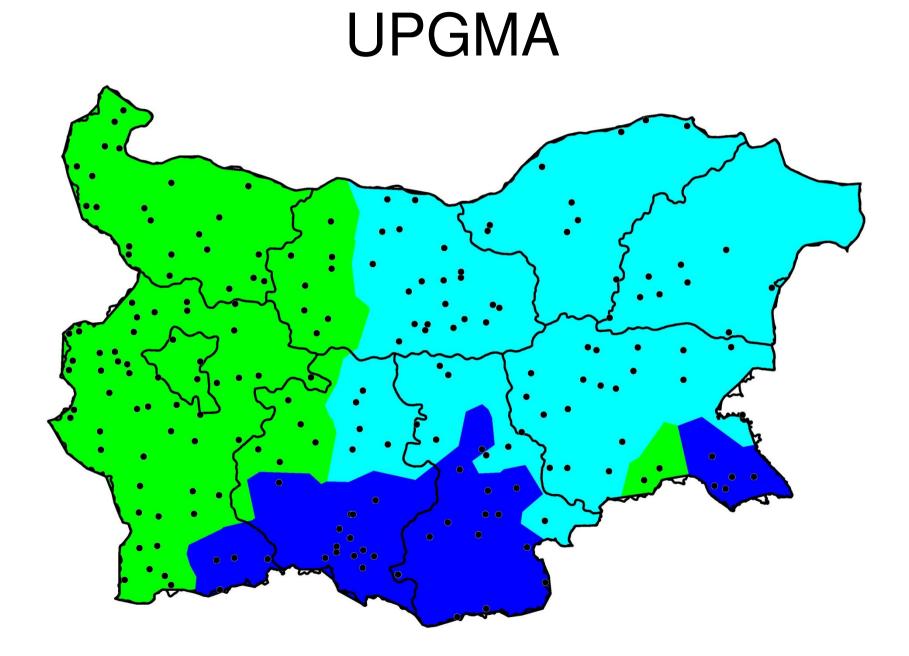

Complete-link

Dendrogram

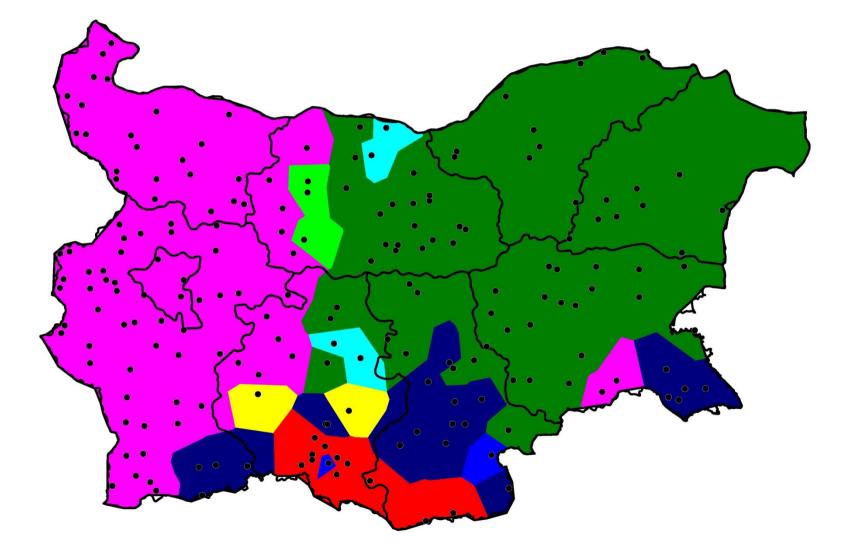
Space dilating

- Balanced clustering
- Clusters often not easy to interpret

Complete-link


UPGMA

Dendrogram

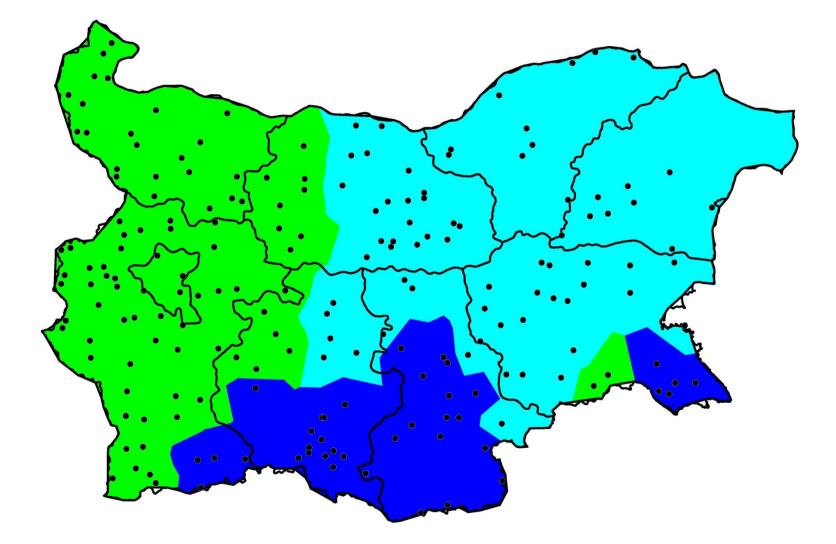

Space conserving

$$\begin{array}{l} - \, d_{k[ij]} = ((\, n_i \, / \, (n_i + n_j \,)) \, x \, d_{ki} \,) + ((n_j \, / \, (n_i + n_j \,)) \, x \\ d_{kj} \,) \end{array}$$

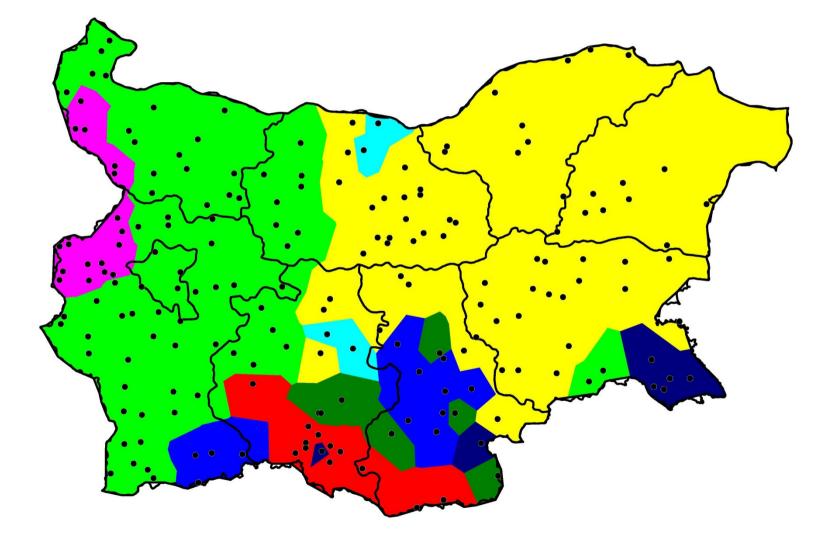
- Linkage between groups
- Averages instead of extreme values
- Number of elements in cluster taken into account

UPGMA

WPGMA

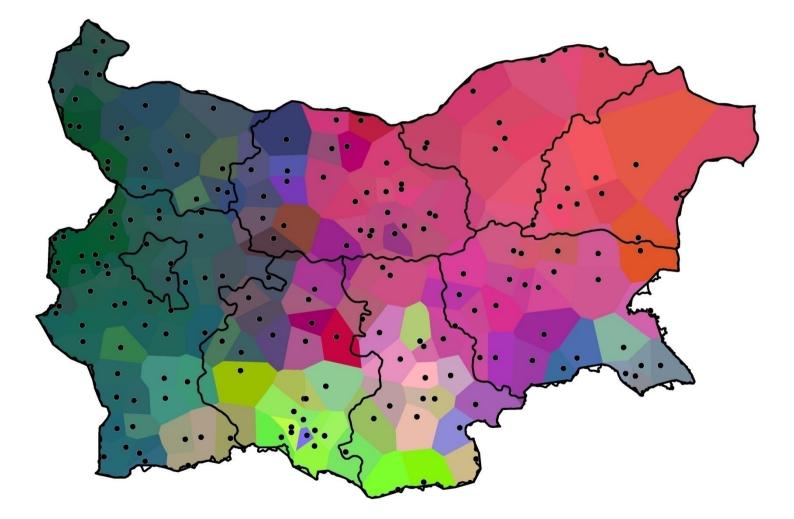

Dendrogram

Space conserving


$$-d_{k[ij]} = (1/2 \times d_{ki}) + (1/2 \times d_{kj})$$

- Linkage within groups
- Number of elements not taken into account

WPGMA


WPGMA

MultiDimensional Scaling

- What is MDS?
 - No clustering
 - A different way to visualize dialect areas
 - Allows insight in dialect-similarities
 - Less sensitive to changes in data
 - Dimensions

MultiDimensional Scaling

Conclusion

- Clustering shows similarity in data
- Useful for exploratory data analysis or data-grouping (dialect areas)
- Know your data!
 - Clustering always has output
 - Choose your method carefully
- Questions?