Predicting Vowel Harmony class from PMI-score

Lili Szabó

May 18, 2012

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis
Discussion
(1) Outline
(2) Introduction
(3) Vowel harmony
(4) Dutch vowels - diphthongs
(5) Data
(6) PMI
(7) Results - PMI
(8) Logistic regression

- Comparing Hungarian and Dutch
- Hungarian data analysis
- Dutch data analysis
(9) Discussion

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?

Research question

Outline

Introduction

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony
- Hungarian: exhibits vowel harmony

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony
- Hungarian: exhibits vowel harmony

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony
- Hungarian: exhibits vowel harmony
- Why is this a relevant question?

Research question

Outline

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony
- Hungarian: exhibits vowel harmony
- Why is this a relevant question?
- when learning a language:

Research question

- Does the distribution of vowels differ within and beyond word boundaries in a language with vowel harmony?
- comparing Dutch and Hungarian
- Dutch: no vowel harmony
- Hungarian: exhibits vowel harmony
- Why is this a relevant question?
- when learning a language:
- does vowel harmony help with word segmentation?

Hungarian vowels

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

Figure: Hungarian Vowel Chart

- backness feature of vowels

Hungarian vowels

Outline

Introduction
Vowel harmony

Dutch vowels

 diphthongsData
PMI
Results - PMI
Logistic

regression

Comparing

Figure: Hungarian Vowel Chart

- backness feature of vowels
- vowels within words agree in their backness feature

Hungarian vowels

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Data

PMI
Results - PMI
Logistic

regression

Comparing

Figure: Hungarian Vowel Chart

- backness feature of vowels
- vowels within words agree in their backness feature
- important role in suffixation

Hungarian vowels

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Data

PMI
Results - PMI
Logistic
regression
Comparing

Figure: Hungarian Vowel Chart

- backness feature of vowels
- vowels within words agree in their backness feature
- important role in suffixation
- neutral vowels: e, é, i, í

Hungarian vowels

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Figure: Hungarian Vowel Chart

- backness feature of vowels
- vowels within words agree in their backness feature
- important role in suffixation
- neutral vowels: e, é, i, í
- orthography of the 14 Hungarian vowels is completely phonetic

Dative suffix - nAk (nak/nek)

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI
Logistic

regression

Comparing

Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- remek alma
wonderfulNOM appleNOM 'wonderful apple'

Dative suffix - nAk (nak/nek)

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction

Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- remek alma
wonderfulNOM appleNOM 'wonderful apple'
- almának
appleDAT
'to the apple'

Dative suffix - nAk (nak/nek)

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

- remek alma
wonderfulNOM appleNOM 'wonderful apple'
- almának
appleDAT 'to the apple'
- remeknek
wonderfulDAT
'to the wonderful'
- Marinak

Marydat 'to Mary'

Dutch vowels and diphthongs

Outline

Introduction
Vowel harmony

- 13 monophthongs, 4 diphthongs

Dutch vowels -

 diphthongsData
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Dutch vowels and diphthongs

Outline

Introduction
Vowel harmony

- 13 monophthongs, 4 diphthongs
- 25 orthographic symbols

Dutch vowels and diphthongs

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- 13 monophthongs, 4 diphthongs
- 25 orthographic symbols
- orthography is not entirely phonetic:

Dutch vowels and diphthongs

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- 13 monophthongs, 4 diphthongs
- 25 orthographic symbols
- orthography is not entirely phonetic:
- e.g. pronunciation of ij and ei is identical in bijt and ei

Dutch vowels and diphthongs

Outline

Introduction

Vowel harmony

Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- 13 monophthongs, 4 diphthongs
- 25 orthographic symbols
- orthography is not entirely phonetic:
- e.g. pronunciation of ij and ei is identical in bijt and ei
- but in this project they were treated as separate symbols in the transcription

Corpora from CHILDES - child directed speech

Table: Corpora details

language	Dutch	Hungarian
token	749755	93254
type	16002	9259
type-token ratio	0.021	0.099
avg. vowels / word	1.283953	1.675671

Pointwise Mutual Information

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs
Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- a measure to score associations (e.g. collocations)
- how two events co-occur

Pointwise Mutual Information

- a measure to score associations (e.g. collocations)
- how two events co-occur
- comparing expected vs. observed probabilities observed
- $\frac{\text { expected }}{}$ co-occurances

Pointwise Mutual Information

- a measure to score associations (e.g. collocations)
- how two events co-occur
- comparing expected vs. observed probabilities observed
- $\frac{\text { expected }}{}$ co-occurances
- are 2 vowels in consecutive syllables within a word co-occuring more often than it would be expected from their frequency in the data?

Pointwise Mutual Information - properties

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- observed expected coccurances

Pointwise Mutual Information - properties

 Harmony classfrom PMI-score
Lili Szabó

Outline

Introduction
Vowel harmony

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information

Pointwise Mutual Information - properties

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$

Pointwise Mutual Information - properties

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items

Pointwise Mutual Information - properties

Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$

Pointwise Mutual Information - properties

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- range: -inf;+inf

Pointwise Mutual Information - properties

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- range: -inf;+inf
- 0 : as often as expected $(\log (1))$

Pointwise Mutual Information - properties

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- range: -inf;+inf
- 0 : as often as expected $(\log (1))$
- negatives values: less than expected

Pointwise Mutual Information - properties

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- $\frac{\text { observed }}{\text { expected }}$ co-occurances
- derived from Mutual Information
- symmetric: $\operatorname{pmi}(x, y)=\operatorname{pmi}(y, x)$
- high score for low frequency items
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- range: -inf;+inf
- 0 : as often as expected $(\log (1))$
- negatives values: less than expected
- positive values: more than expected

Pointwise Mutual Information - calculation

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction

- after preprocessing the data

Pointwise Mutual Information - calculation

- after preprocessing the data
- using Python-NLTK to calculate scores

Pointwise Mutual Information - calculation

- after preprocessing the data
- using Python-NLTK to calculate scores

Pointwise Mutual Information - calculation

- after preprocessing the data
- using Python-NLTK to calculate scores
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$

Pointwise Mutual Information - calculation

- after preprocessing the data
- using Python-NLTK to calculate scores
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- Dutch: $\operatorname{PMI}(a, e)=-0.03$
- Hungarian: $\operatorname{PMI}(a, e)=-4.3$

Pointwise Mutual Information - calculation

- after preprocessing the data
- using Python-NLTK to calculate scores
- $\log _{2} \frac{p(a, e)}{p(a) p(e)}$
- Dutch: $\operatorname{PMI}(a, e)=-0.03$
- Hungarian: $\operatorname{PMI}(a, e)=-4.3$
- Dutch: $\operatorname{PMI}(e, e)=-0.09$
- Hungarian: $\operatorname{PMI}(\mathrm{e}, \mathrm{e})=0.35$

Smoothing

Outline

Introduction

Vowel harmony

- add-one smoothing (adding all possible vowel pairs with count 1)

Smoothing

Predicting Vowel

 Harmony classfrom PMI-score
Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- add-one smoothing (adding all possible vowel pairs with count 1)
- PMI-scores of these bigrams range from lowest to highest

Smoothing

Outline

Introduction

regression

Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- add-one smoothing (adding all possible vowel pairs with count 1)
- PMI-scores of these bigrams range from lowest to highest
- low frequency effect for rare Dutch diphthongs

Distribution

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

Figure: Distribution of PMI-scores

Boxplot

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

Figure: PMI-scores wrt Harmony-class

Why to use logistic regression?

```
Predicting Vowel
    Harmony class
from PMI-score
    Lili Szabó
Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
```

- to predict VH -class from PMI-score

Why to use logistic regression?

Outline

Introduction

- to predict VH-class from PMI-score
- are the \log odds $\log \frac{p}{1-p}$ of harmony class predictable from PMI-score?

Probability, odds, log odds - range

Predicting Vowel Harmony class from PMI-score
Lili Szabó

Outline

Introduction
Vowel harmony
Dutch vowels

- p: [0:1]

Probability, odds, log odds - range

Outline

Introduction
Vowel harmony
Dutch vowels

- p: [0:1]
- odds: $\frac{p}{1-p}=[0:+$ inf $]$

Probability, odds, log odds - range

Outline

Introduction
Vowel harmony
Dutch vowels

- p: [0:1]
- odds: $\frac{p}{1-p}=[0:+\mathrm{inf}]$
- log odds: [-inf:+inf]

Variables

Outline

Introduction
Vowel harmony
Dutch vowels

- independent: PMI-score - numeric
Data
diphthongs

PMI
Results - PMI
Logistic regression
Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

Variables

Outline

Introduction

- independent: PMI-score - numeric
- dependent: VH-class - binary (harmonic vs. disharmonic)

Variables

- independent: PMI-score - numeric
- dependent: VH-class - binary (harmonic vs. disharmonic)
- simple model (1 independent variable)

Assumptions

Predicting Vowel Harmony class
from PMI-score
Lili Szabó

Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI
Logistic regression
Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Discussion

- no normality of independent variable and residuals is required

Assumptions

Outline

- no normality of independent variable and residuals is required
- dependent variable is dichotomic: true
- (information loss: neutral class in harmony)

Assumptions

Outline

- no normality of independent variable and residuals is required
- dependent variable is dichotomic: true
- (information loss: neutral class in harmony)
- independent variables are linearly related to the log odds

PMI-score and harmony-class

Predicting Vowel Harmony class from PMI-score

Lili Szabó

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic regression
Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis

Discussion

Figure: PMI-score and harmony-class

Intercept model

```
Predicting Vowel
    Harmony class
from PMI-score
    Lili Szabó
Outline > with(hu, table(harmony))
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and
Dutch
Hungarian data
analysis
Dutch data
harmony
    0 1
    48 148
    > 148 / (48+148) # prob of harmonic pairs
    [1] 0.755102
    > hu_m1 = glm(formula = hu$harmony ~ 1, family = binomial(link = "logit")
    > summary(hu_m1) # intercept model
    [...]
    Coefficients:
    Estimate Std. Error z value Pr (> |z|)
    (Intercept) 1.5805 0.2075 7.616 2.62e-14 ***
    [...]
    > antilogit <- function(x) { exp(x) / (1 + exp(x) ) } # logit to prob
    > antilogit(1.5805)
    [1] 0.8292753
```

analysis

Logit model

Predicting Vowe Harmony class from PMI-score

Lili Szabó

Outline
> hu_m2 = glm(formula = hu\$harmony ~ hu\$pmi.score, family = binomial(link > summary (hu_m2) \# model with pmi.score
Introduction
Vowel harmony
Dutch vowels diphthongs

Data
PMI
Results - PMI
Logistic

regression

Comparing
Hungarian and Dutch
Hungarian data analysis
Dutch data analysis
[...]

Coefficients:

```
[...]
    > anova(hu_m1, hu_m2)
Analysis of Deviance Table
```

(Intercept) $4.21920 .6661 \quad 6.3342 .38 e^{2}-10 * * *$
hu\$pmi.score $1.0721 \quad 0.1887$ 5.682 1.33e-08 ***
Model 1: hu\$harmony ~ 1
Model 2: hu\$harmony ~hu\$pmi.score
Resid. Df Resid. Dev Df Deviance
$1 \quad 163149.911$
$\begin{array}{lllll}2 & 162 & 81.983 & 1 & 67.927\end{array}$

Coefficients - how to interpret odds ratios?

```
Predicting Vowel
    Harmony class
from PMI-score
    Lili Szabó
Outline
Introduction
Vowel harmony
Dutch vowels
diphthongs
Data
PMI
Results - PMI
Logistic
regression
Comparing
```

```
> 1-pchisq(67.927,df=1) #computing the chi-sqare probability of deviance
[1] 2.220446e-16
> exp(hu_m2$coefficients)
    (Intercept) hu$pmi.score
        67.979974 2.921596
```

- one unit increase in pmi.score, the odds of being a harmonic pair (versus not being harmonic) increase by a factor of 2.92

Logit models of Dutch

Outline

Introduction
Vowel harmony
Dutch vowels

- intercept significant: $\mathrm{p}=2 \mathrm{e}-16$

Logit models of Dutch

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

Data

- intercept significant: $\mathrm{p}=2 \mathrm{e}-16$
- pmi.score: non-significant, $\mathrm{p}=0.71$

Logit models of Dutch

- intercept significant: $\mathrm{p}=2 \mathrm{e}-16$
- pmi.score: non-significant, $\mathrm{p}=0.71$
- pmi.score in the without smoothing data is not significant either: $\mathrm{p}=0.308$

Conclusion

Outline

Introduction
Vowel harmony
Dutch vowels
diphthongs

- PMI-score of of vowel pairs (vowels in neighbouring syllables)

Data

PMI
Results - PMI
Logistic
regression
Comparing
Hungarian and
Dutch
Hungarian data analysis
Dutch data analysis

Conclusion

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- PMI-score of of vowel pairs (vowels in neighbouring syllables) - is NOT a predictor of VH-class of Dutch vowel pairs

Conclusion

Outline

Introduction
Vowel harmony
Dutch vowels diphthongs

- PMI-score of of vowel pairs (vowels in neighbouring syllables)
- is NOT a predictor of VH-class of Dutch vowel pairs
- is a predictor of VH-class of Hungarian vowel pairs

