

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Martijn Wieling

Department of Computational Linguistics, University of Groningen

Seminar in Methodology and Statistics - May 20, 2009

Goal

• Making the title of this presentation understandable!

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Overview

- Why co-clustering?
- Method
 - Introduction to eigenvalues and eigenvectors
 - Simple clustering
 - Co-clustering
- Complete dataset
- Results
- Conclusions

Why co-clustering?

- Research interest: language and dialectal variation
- Important method: cluster similar (dialectal) varieties together
- Problem: clustering varieties does not yield a linguistic basis
- Previous solutions: investigate sound correspondences post hoc (e.g., Heeringa, 2004)
- Co-clustering: clusters varieties and sound correspondences simultaneously
 - Eigenvalues and eigenvectors are central in this approach

Graphs and matrices

• A graph is a set of vertices connected with edges:

A graph can also be represented by its adjacency matrix A

	А	В	С	D
Α	0	1	1	1
В	1	0	0	0
С	1	1	0	0
D	0	1	1	0

Eigenvalues and eigenvectors

 The eigenvalues λ and the eigenvectors x of a square matrix A are defined as follows:

$$Ax = \lambda x$$
 [$\Rightarrow (A - \lambda I)x = 0$]

In matrix-form:

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• This is solved when:

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$
$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$$

Eigenvalues and eigenvectors

 The eigenvalues λ and the eigenvectors x of a square matrix A are defined as follows:

$$Ax = \lambda x$$
 [$\Rightarrow (A - \lambda I)x = 0$]

• In matrix-form:

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• This is solved when:

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$
$$a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$$

Eigenvalues and eigenvectors

 The eigenvalues λ and the eigenvectors x of a square matrix A are defined as follows:

$$Ax = \lambda x$$
 [$\Rightarrow (A - \lambda I)x = 0$]

In matrix-form:

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• This is solved when:

$$(a_{11} - \lambda)x_1 + a_{12}x_2 = 0$$

 $a_{21}x_1 + (a_{22} - \lambda)x_2 = 0$

• Consider the following example:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

• Using $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ we get:

$$\begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

• Solved when det(**A**) = 0: $(1 - \lambda)^2 - 4 = 0$ • Using $\lambda_1 = 3$ and $\lambda_2 = -1$ we obtain $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

• Consider the following example: $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

• Using $(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$ we get:

$$\begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

• Solved when det(\mathbf{A}) = 0: $(1 - \lambda)^2 - 4 = 0$ • Using $\lambda_1 = 3$ and $\lambda_2 = -1$ we obtain $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

- Consider the following example: $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
- Using $(\boldsymbol{A} \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$ we get:

$$\begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Solved when det(A) = 0: (1 - λ)² - 4 = 0
Using λ₁ = 3 and λ₂ = -1 we obtain x = ¹₁ and x = ¹₋₁

• Consider the following example: $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

• Using $(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$ we get:

$$\begin{bmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

• Solved when $det(A) = 0: (1 - \lambda)^2 - 4 = 0$

• Using
$$\lambda_1 = 3$$
 and $\lambda_2 = -1$ we obtain $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Spectrum of a graph

- The spectrum of a graph are the eigenvalues of the adjacency matrix **A** of the graph
- The spectrum is considered to capture important structural properties of a graph (Chung, 1997)
- Some interesting applications of eigenvalues and eigenvectors:
 - Principal Component Analysis (PCA; Duda et al., 2001: 114–117)
 - Pagerank (Google; Brin and Page, 1998)
 - Partitioning (i.e. clustering; Von Luxburg, 2007)

Example of spectral graph clustering (1/8)

• Consider the matrix **A** with sound correspondences:

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[r]/[ĸ]
[a]/[i]	0	1	1	0	0	0
[ʌ]/[i]	1	0	1	0	0	0
[r]/[x]	1	1	0	1	0	0
[k]/[x]	0	0	1	0	1	1
[r]/[R]	0	0	0	1	0	1
[l]/[R]	0	0	0	1	1	0

• In graph-form:

Example of spectral graph clustering (2/8)

• To partition this graph, we have to determine the optimal cut:

• The optimal cut yielding balanced clusters is obtained by finding the eigenvectors of the normalized Laplacian: $L_n = D^{-1}L$, with L = D - A and D the degree matrix of A (Shi and Malik, 2000; Von Luxburg, 2007).

Example of spectral graph clustering (3/8)

• The adjacency matrix A:

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]/[R]
[a]/[i]	0	1	1	0	0	0
[ʌ]/[i]	1	0	1	0	0	0
[r]/[x]	1	1	0	1	0	0
[k]/[x]	0	0	1	0	1	1
[r]/[R]	0	0	0	1	0	1
[r]/[ਸ਼]	0	0	0	1	1	0

Example of spectral graph clustering (4/8)

• The Laplacian matrix *L*:

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]\[R]
[a]/[i]	2	-1	-1	0	0	0
[∧]/[i]	-1	2	-1	0	0	0
[r]/[x]	-1	-1	3	-1	0	0
[k]/[x]	0	0	-1	3	-1	-1
[r]/[R]	0	0	0	-1	2	-1
[L]\[R]	0	0	0	-1	-1	2

Example of spectral graph clustering (5/8)

• The normalized Laplacian matrix *L_n*:

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]\[R]
[a]/[i]	1	-0.5	-0.5	0	0	0
[∧]/[i]	-0.5	1	-0.5	0	0	0
[r]/[x]	-0.33	-0.33	1	-0.33	0	0
[k]/[x]	0	0	-0.33	1	-0.33	-0.33
[r]/[R]	0	0	0	-0.5	1	-0.5
[L]\[R]	0	0	0	-0.5	-0.5	1

Example of spectral graph clustering (6/8)

• The eigenvalues λ and eigenvectors **x** of L_n (i.e. $L_n \mathbf{x} = \lambda \mathbf{x}$):

•
$$\lambda_1 = 0$$
 with **x** = $[-0.41 - 0.41 - 0.41 - 0.41 - 0.41]^T$

•
$$\lambda_2 = 0.21$$
 with **x** = $[0.46 \ 0.46 \ 0.27 \ -0.27 \ -0.46 \ -0.46]^T$

•
$$\lambda_3 = 1.17$$
 with **x** = $[0.36 \ 0.36 \ -0.49 \ -0.49 \ 0.36 \ 0.36]^T$

- ...
- The first (smallest) eigenvector does not yield clustering information. Does the second?

Example of spectral graph clustering (6/8)

• The eigenvalues λ and eigenvectors **x** of **L**_n (i.e. **L**_n**x** = λ **x**):

•
$$\lambda_1 = 0$$
 with $\mathbf{x} = [-0.41 \ -0.41 \ -0.41 \ -0.41 \ -0.41 \ -0.41]^T$

•
$$\lambda_2 = 0.21$$
 with **x** = $[0.46 \ 0.46 \ 0.27 \ -0.27 \ -0.46 \ -0.46]^{T}$

•
$$\lambda_3 = 1.17$$
 with **x** = $[0.36 \ 0.36 \ -0.49 \ -0.49 \ 0.36 \ 0.36]^7$

- ...
- The first (smallest) eigenvector does not yield clustering information. Does the second? Yes!

Example of spectral graph clustering (7/8)

 If we use the k-means algorithm (i.e. minimize the within-cluster sum of squares; Lloyd, 1982) to cluster the eigenvector in two groups we obtain the following partitioning:

 To cluster in k > 2 groups we use the second to k (smallest) eigenvectors

Example of spectral graph clustering (8/8)

- To cluster in k = 3 groups, we use:
 - $\lambda_2 = 0.21$ with **x** = $[0.46 \ 0.46 \ 0.27 \ -0.27 \ -0.46 \ -0.46]^T$
 - $\lambda_3 = 1.17$ with $\mathbf{x} = [0.36 \ 0.36 \ -0.49 \ -0.49 \ 0.36 \ 0.36]^{\overline{T}}$

• We obtain the following clustering:

Example of spectral graph clustering (8/8)

- To cluster in k = 3 groups, we use:
 - $\lambda_2 = 0.21$ with **x** = $[0.46 \ 0.46 \ 0.27 \ -0.27 \ -0.46 \ -0.46]^T$
 - $\lambda_3 = 1.17$ with $\mathbf{x} = [0.36 \ 0.36 \ -0.49 \ -0.49 \ 0.36 \ 0.36]^{T}$
- We obtain the following clustering:

Bipartite graphs

- A bipartite graph is a graph whose vertices can be divided in two disjoint sets where every edge connects a vertex from one set to a vertex in another set. Vertices within a set are not connected.
- A matrix representation of a bipartite graph:

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]\[R]
Appelscha	1	1	1	0	0	0
Oudega	1	1	1	0	0	0
Zoutkamp	0	0	1	1	0	0
Kerkrade	0	0	0	1	1	1
Appelscha	0	0	0	1	1	1

Example of co-clustering a biparte graph (1/6)

- The (naive) co-clustering procedure is equal to clustering in one dimension (i.e. cluster eigenvector(s) of normalized Laplacian)
- Consider the following graph:

Example of co-clustering a biparte graph (2/6)

• The adjacency matrix A:

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[l]/[R]
appelscha	0	0	0	0	0	1	1	1	0	0	0
oudega	0	0	0	0	0	1	1	1	0	0	0
zoutkamp	0	0	0	0	0	0	0	1	1	0	0
kerkrade	0	0	0	0	0	0	0	0	1	1	1
appelscha	0	0	0	0	0	0	0	0	1	1	1
[a]/[i]	1	1	<u>ō</u>	ō	0	0	0	<u>ō</u>	0	0	0
[^]/[i]	1	1	0	0	0	0	0	0	0	0	0
[r]/[x]	1	1	1	0	0	0	0	0	0	0	0
[k]/[x]	0	0	1	1	1	0	0	0	0	0	0
[r]/[R]	0	0	0	1	1	0	0	0	0	0	0
[r]/[ʁ]	0	0	0	1	1	0	0	0	0	0	0

Example of co-clustering a biparte graph (3/6)

• The Laplacian matrix *L*:

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[r]/[ʁ]
appelscha	3	0	0	0	0	-1	-1	-1	0	0	0
oudega	0	3	0	0	0	-1	-1	-1	0	0	0
zoutkamp	0	0	2	0	0	0	0	-1	-1	0	0
kerkrade	0	0	0	3	0	0	0	0	-1	-1	-1
appelscha	0	0	0	0	3	0	0	0	-1	-1	-1
[a]/[i]		-1	<u>ō</u>	ō	0	2	0	ō	0	0	0
[^]/[i]	-1	-1	0	0	0	0	2	0	0	0	0
[r]/[x]	-1	-1	-1	0	0	0	0	3	0	0	0
[k]/[x]	0	0	-1	-1	-1	0	0	0	3	0	0
[r]/[R]	0	0	0	-1	-1	0	0	0	0	2	0
[l]/[R]	0	0	0	-1	-1	0	0	0	0	0	2

Example of co-clustering a biparte graph (4/6)

• The normalized Laplacian matrix L_n :

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[^]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]/[R]
appelscha	1	0	0	0	0	-0.33	-0.33	-0.33	0	0	0
oudega	0	1	0	0	0	-0.33	-0.33	-0.33	0	0	0
zoutkamp	0	0	1	0	0	0	0	-0.5	-0.5	0	0
kerkrade	0	0	0	1	0	0	0	0	-0.33	-0.33	-0.33
appelscha	0	0	0	0	1	0	0	0	-0.33	-0.33	-0.33
[a]/[i]	-0.5	-0.5	ō	0	ō-1	1	ō		0	<u>ō</u>	0
[^]/[i]	-0.5	-0.5	0	0	0	0	1	0	0	0	0
[r]/[x]	-0.33	-0.33	-0.33	0	0	0	0	1	0	0	0
[k]/[x]	0	0	-0.33	-0.33	-0.33	0	0	0	1	0	0
[r]/[R]	0	0	0	-0.5	-0.5	0	0	0	0	1	0
[r]/[ʁ]	0	0	0	-0.5	-0.5	0	0	0	0	0	1

Example of co-clustering a biparte graph (5/6)

• To cluster in k = 2 groups, we use:

• $\lambda_2 = .057, \mathbf{x} = [.32 - .32 \ 0.32 \ .32 - .34 - .34 - .23 \ .23 \ .34 \ .34]^T$

Example of co-clustering a biparte graph (5/6)

• To cluster in k = 2 groups, we use:

• $\lambda_2 = .057, \mathbf{x} = [.32 - .32 \ 0.32 \ .32 - .34 - .34 - .23 \ .23 \ .34 \ .34]^T$

• We obtain the following co-clustering:

Example of co-clustering a biparte graph (6/6)

• To cluster in k = 3 groups, we use:

- $\lambda_2 = .057, \mathbf{x} = [.32 .32 \ 0.32 \ .32 .34 .34 .23 \ .23 \ .34 \ .34]^T$
- $\lambda_3 = .53, \mathbf{x} = [.12 .12 .7 .12 .12 .25 .25 .33 .33 .25 .25]^T$

Example of co-clustering a biparte graph (6/6)

• To cluster in k = 3 groups, we use:

- $\lambda_2 = .057, \mathbf{x} = [.32 .32 0 .32 .32 .34 .34 .23 .23 .34 .34]^T$
- $\lambda_3 = .53$, **x** = [.12 .12 .7 .12 .12 .25 .25 -.33 -.33 .25 .25]^{\vec{T}}

• We obtain the following co-clustering:

A faster method

- The previous method is relatively slow due to the use of the large (sparse) matrix *A* of size (n + m) × (n + m)
- The matrix A' contains the same information, but is more dense (size: n × m):

	[a]/[i]	[ʌ]/[i]	[r]/[x]	[k]/[x]	[r]/[R]	[L]/[R]
Appelscha	1	1	1	0	0	0
Oudega	1	1	1	0	0	0
Zoutkamp	0	0	1	1	0	0
Kerkrade	0	0	0	1	1	1
Appelscha	0	0	0	1	1	1

 The singular value decomposition (SVD) of A'_n also results in equivalent clustering information and is quicker to compute (Dhillon, 2001)

Complete dataset

- Alignments of pronunciations of 562 words for 424 varieties in the Netherlands against a reference pronunciation
 - Pronunciations originate from the GTRP (Goeman and Taeldeman, 1996; Van den Berg, 2003; Wieling et al., 2007)
 - The pronunciations of Delft were used as the reference
 - Alignments were obtained using the Levenshtein algorithm using a Pointwise Mutual Information procedure (Wieling et al., 2009)
- We generated a bipartite graph of varieties v and sound correspondences s
 - There is an edge between v_i and s_j iff freq $(s_j \text{ in } v_i) > 0$
- All the following co-clustering results are obtained applying the fast SVD method

Distribution of sites

Results: {2,3,4} co-clusters in the data

Results: {2,3,4} clusters of varieties

Results: {2,3,4} clusters of sound correspondences

• Sound correspondences specific for the Frisian area

Reference	[^]	[^]	[a]	[0]	[u]	[X]	[X]	[r]
Frisian	[I]	[i]	[i]	[3]	[3]	[j]	[Z]	[X]

• Sound correspondences specific for the Limburg area

Reference	[r]	[r]	[k]	[n]	[n]	[w]
Limburg	[R]	[R]	[X]	[R]	[R]	[f]

• Sound correspondences specific for the Low Saxon area

Reference	[ə]	[ə]	[ə]	[-]	[a]
Low Saxon	[m]	[ŋ]	[N]	[?]	[e]

To conclude

- Bipartite spectral graph partitioning is a very useful method to simultaneously cluster
 - · varieties and sound correspondences
 - words and documents
 - genes and conditions
 - ... and ...
- Do you now understand the title?
 - Bipartite Spectral graph partitioning to co-cluster varieties and sound correspondences

To conclude

- Bipartite spectral graph partitioning is a very useful method to simultaneously cluster
 - varieties and sound correspondences
 - words and documents
 - genes and conditions
 - ... and ...
- Do you now understand the title?
 - Bipartite Spectral graph partitioning to co-cluster varieties and sound correspondences

Any questions?

Thank You!

References

- Boudewijn van den Berg. 2003. Phonology & Morphology of Dutch & Frisian Dialects in 1.1 million transcriptions. Goeman-Taeldeman-Van Reenen project 1980–1995, Meertens Instituut Electronic Publications in Linguistics 3. Meertens Instituut (CD-ROM), Amsterdam.
- Sergey Brin, and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computers Networks and ISDN Systems, 30(1–7):107–117.
- Fan Chung. 1997. Spectral Graph Theory. American Mathematical Society.
- Inderjit Dhillon. 2001. Co-clustering documents and words using bipartite spectral graph partitioning. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 269–274. ACM New York.
- Richard Duda, Peter Hart, and David Stork. 2001. Pattern Classification. Wiley New York.
- Ton Goeman, and Johan Taeldeman. 1996. Fonologie en morfologie van de Nederlandse dialecten. Een nieuwe materiaalverzameling en twee nieuwe atlasprojecten. Taal en Tongval, 48:38–59.
- Wilbert Heeringa. 2004. Measuring Dialect Pronunciation Differences using Levenshtein Distance. Ph.D. thesis, Rijksuniversiteit Groningen.
- Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137.
- Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing, 17(4):495–416.
- Jianbo Shi, and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8):888-905.
- Martijn Wieling, Wilbert Heeringa, and John Nerbonne. 2007. An aggregate analysis of pronunciation in the Goeman-Taeldeman-Van Reenen-Project data. *Taal en Tongval*, 59(1):84–116.
- Martijn Wieling, Jelena Prokić, and John Nerbonne. 2009. Evaluating the pairwise string alignment of pronunciations. In: Lars Borin and Piroska Lendvai (eds.) Language Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education (LaTeCH - SHELT&R 2009) Workshop at the 12th Meeting of the European Chapter of the Association for Computational Linguistics. Athens, 30 March 2009, pp. 26-34.