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Goal

Making the title of this presentation understandable!

Bipartite spectral graph partitioning to co-cluster varieties and
sound correspondences
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Why co-clustering?

Research interest: language and dialectal variation
Important method: cluster similar (dialectal) varieties together
Problem: clustering varieties does not yield a linguistic basis
Previous solutions: investigate sound correspondences post hoc
(e.g., Heeringa, 2004)
Co-clustering: clusters varieties and sound correspondences
simultaneously

Eigenvalues and eigenvectors are central in this approach
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Graphs and matrices

A graph is a set of vertices connected with edges:

A graph can also be represented by its adjacency matrix A
A B C D

A 0 1 1 1
B 1 0 0 0
C 1 1 0 0
D 0 1 1 0
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Eigenvalues and eigenvectors

The eigenvalues λ and the eigenvectors xxx of a square matrix AAA
are defined as follows:

AAAxxx = λxxx [⇒ (AAA− λIII)xxx = 000]

In matrix-form: [
a11 − λ a12

a21 a22 − λ

] [
x1
x2

]
=

[
0
0

]
This is solved when:

(a11 − λ)x1 + a12x2 = 0

a21x1 + (a22 − λ)x2 = 0
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Example of calculating eigenvalues and eigenvectors

Consider the following example: AAA =

[
1 2
2 1

]
Using (AAA− λIII)xxx = 000 we get:[

1− λ 2
2 1− λ

] [
x1
x2

]
=

[
0
0

]

Solved when det(AAA) = 0: (1− λ)2 − 4 = 0

Using λ1 = 3 and λ2 = −1 we obtain xxx =

[
1
1

]
and xxx =

[
1
−1

]
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Spectrum of a graph

The spectrum of a graph are the eigenvalues of the adjacency
matrix AAA of the graph

The spectrum is considered to capture important structural
properties of a graph (Chung, 1997)

Some interesting applications of eigenvalues and eigenvectors:
Principal Component Analysis (PCA; Duda et al., 2001: 114–117)
Pagerank (Google; Brin and Page, 1998)
Partitioning (i.e. clustering; Von Luxburg, 2007)
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Example of spectral graph clustering (1/8)

Consider the matrix A with sound correspondences:
[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

[a]/[i] 0 1 1 0 0 0
[2]/[i] 1 0 1 0 0 0
[r]/[x] 1 1 0 1 0 0
[k]/[x] 0 0 1 0 1 1
[r]/[ö] 0 0 0 1 0 1
[r]/[K] 0 0 0 1 1 0

In graph-form:
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Example of spectral graph clustering (2/8)

To partition this graph, we have to determine the optimal cut:

The optimal cut yielding balanced clusters is obtained by finding
the eigenvectors of the normalized Laplacian: LLLn = DDD−1LLL, with
LLL = DDD −AAA and DDD the degree matrix of AAA (Shi and Malik, 2000; Von
Luxburg, 2007).
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Example of spectral graph clustering (3/8)

The adjacency matrix AAA:

[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]
[a]/[i] 0 1 1 0 0 0
[2]/[i] 1 0 1 0 0 0
[r]/[x] 1 1 0 1 0 0
[k]/[x] 0 0 1 0 1 1
[r]/[ö] 0 0 0 1 0 1
[r]/[K] 0 0 0 1 1 0
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Example of spectral graph clustering (4/8)

The Laplacian matrix LLL:

[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]
[a]/[i] 2 -1 -1 0 0 0
[2]/[i] -1 2 -1 0 0 0
[r]/[x] -1 -1 3 -1 0 0
[k]/[x] 0 0 -1 3 -1 -1
[r]/[ö] 0 0 0 -1 2 -1
[r]/[K] 0 0 0 -1 -1 2
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Example of spectral graph clustering (5/8)

The normalized Laplacian matrix LLLn:

[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]
[a]/[i] 1 -0.5 -0.5 0 0 0
[2]/[i] -0.5 1 -0.5 0 0 0
[r]/[x] -0.33 -0.33 1 -0.33 0 0
[k]/[x] 0 0 -0.33 1 -0.33 -0.33
[r]/[ö] 0 0 0 -0.5 1 -0.5
[r]/[K] 0 0 0 -0.5 -0.5 1
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Example of spectral graph clustering (6/8)

The eigenvalues λ and eigenvectors xxx of LLLn (i.e. LLLnxxx = λxxx):
λ1 = 0 with xxx = [-0.41 -0.41 -0.41 -0.41 -0.41 -0.41]T

λ2 = 0.21 with xxx = [0.46 0.46 0.27 -0.27 -0.46 -0.46]T

λ3 = 1.17 with xxx = [0.36 0.36 -0.49 -0.49 0.36 0.36]T

...

The first (smallest) eigenvector does not yield clustering
information. Does the second?
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-0.270.27
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Example of spectral graph clustering (7/8)

If we use the k -means algorithm (i.e. minimize the within-cluster
sum of squares; Lloyd, 1982) to cluster the eigenvector in two
groups we obtain the following partitioning:

To cluster in k > 2 groups we use the second to k (smallest)
eigenvectors
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Example of spectral graph clustering (8/8)

To cluster in k = 3 groups, we use:
λ2 = 0.21 with xxx = [0.46 0.46 0.27 -0.27 -0.46 -0.46]T

λ3 = 1.17 with xxx = [0.36 0.36 -0.49 -0.49 0.36 0.36]T

We obtain the following clustering:
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Bipartite graphs

A bipartite graph is a graph whose vertices can be divided in two
disjoint sets where every edge connects a vertex from one set to a
vertex in another set. Vertices within a set are not connected.

A matrix representation of a bipartite graph:
[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

Appelscha 1 1 1 0 0 0
Oudega 1 1 1 0 0 0
Zoutkamp 0 0 1 1 0 0
Kerkrade 0 0 0 1 1 1
Appelscha 0 0 0 1 1 1
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Example of co-clustering a biparte graph (1/6)

The (naive) co-clustering procedure is equal to clustering in one
dimension (i.e. cluster eigenvector(s) of normalized Laplacian)
Consider the following graph:
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Example of co-clustering a biparte graph (2/6)

The adjacency matrix AAA:
appelscha oudega zoutkamp kerkrade vaals [a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

appelscha 0 0 0 0 0 1 1 1 0 0 0
oudega 0 0 0 0 0 1 1 1 0 0 0
zoutkamp 0 0 0 0 0 0 0 1 1 0 0
kerkrade 0 0 0 0 0 0 0 0 1 1 1
appelscha 0 0 0 0 0 0 0 0 1 1 1
[a]/[i] 1 1 0 0 0 0 0 0 0 0 0
[2]/[i] 1 1 0 0 0 0 0 0 0 0 0
[r]/[x] 1 1 1 0 0 0 0 0 0 0 0
[k]/[x] 0 0 1 1 1 0 0 0 0 0 0
[r]/[ö] 0 0 0 1 1 0 0 0 0 0 0
[r]/[K] 0 0 0 1 1 0 0 0 0 0 0
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Example of co-clustering a biparte graph (3/6)

The Laplacian matrix LLL:
appelscha oudega zoutkamp kerkrade vaals [a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

appelscha 3 0 0 0 0 -1 -1 -1 0 0 0
oudega 0 3 0 0 0 -1 -1 -1 0 0 0
zoutkamp 0 0 2 0 0 0 0 -1 -1 0 0
kerkrade 0 0 0 3 0 0 0 0 -1 -1 -1
appelscha 0 0 0 0 3 0 0 0 -1 -1 -1
[a]/[i] -1 -1 0 0 0 2 0 0 0 0 0
[2]/[i] -1 -1 0 0 0 0 2 0 0 0 0
[r]/[x] -1 -1 -1 0 0 0 0 3 0 0 0
[k]/[x] 0 0 -1 -1 -1 0 0 0 3 0 0
[r]/[ö] 0 0 0 -1 -1 0 0 0 0 2 0
[r]/[K] 0 0 0 -1 -1 0 0 0 0 0 2
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Example of co-clustering a biparte graph (4/6)

The normalized Laplacian matrix LLLn:
appelscha oudega zoutkamp kerkrade vaals [a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

appelscha 1 0 0 0 0 -0.33 -0.33 -0.33 0 0 0
oudega 0 1 0 0 0 -0.33 -0.33 -0.33 0 0 0
zoutkamp 0 0 1 0 0 0 0 -0.5 -0.5 0 0
kerkrade 0 0 0 1 0 0 0 0 -0.33 -0.33 -0.33
appelscha 0 0 0 0 1 0 0 0 -0.33 -0.33 -0.33
[a]/[i] -0.5 -0.5 0 0 0 1 0 0 0 0 0
[2]/[i] -0.5 -0.5 0 0 0 0 1 0 0 0 0
[r]/[x] -0.33 -0.33 -0.33 0 0 0 0 1 0 0 0
[k]/[x] 0 0 -0.33 -0.33 -0.33 0 0 0 1 0 0
[r]/[ö] 0 0 0 -0.5 -0.5 0 0 0 0 1 0
[r]/[K] 0 0 0 -0.5 -0.5 0 0 0 0 0 1
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Example of co-clustering a biparte graph (5/6)

To cluster in k = 2 groups, we use:
λ2 = .057, xxx = [.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T
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Example of co-clustering a biparte graph (6/6)

To cluster in k = 3 groups, we use:
λ2 = .057, xxx = [.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T

λ3 = .53, xxx = [.12 .12 -.7 .12 .12 .25 .25 -.33 -.33 .25 .25]T

Martijn Wieling 23/32



Example of co-clustering a biparte graph (6/6)

To cluster in k = 3 groups, we use:
λ2 = .057, xxx = [.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T

λ3 = .53, xxx = [.12 .12 -.7 .12 .12 .25 .25 -.33 -.33 .25 .25]T

We obtain the following co-clustering:

(-0.32, 0.12)

(0, -0.7)

(0.32, 0.12)

(0.32, 0.12)

(-0.34, 0.25)

(-0.34, 0.25)

(-0.23, -0,33)

(0.23, -0.33)

(0.34, 0.25)

(0.34, 0.25)

(-0.32, 0.12)

Martijn Wieling 23/32



A faster method

The previous method is relatively slow due to the use of the large
(sparse) matrix AAA of size (n + m)× (n + m)

The matrix AAA′ contains the same information, but is more dense
(size: n ×m):

[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]
Appelscha 1 1 1 0 0 0
Oudega 1 1 1 0 0 0
Zoutkamp 0 0 1 1 0 0
Kerkrade 0 0 0 1 1 1
Appelscha 0 0 0 1 1 1

The singular value decomposition (SVD) of AAA′n also results in
equivalent clustering information and is quicker to compute
(Dhillon, 2001)
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Complete dataset

Alignments of pronunciations of 562 words for 424 varieties in the
Netherlands against a reference pronunciation

Pronunciations originate from the GTRP (Goeman and Taeldeman,
1996; Van den Berg, 2003; Wieling et al., 2007)
The pronunciations of Delft were used as the reference
Alignments were obtained using the Levenshtein algorithm using a
Pointwise Mutual Information procedure (Wieling et al., 2009)

We generated a bipartite graph of varieties v and sound
correspondences s

There is an edge between vi and sj iff freq(sj in vi) > 0

All the following co-clustering results are obtained applying the
fast SVD method
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Distribution of sites
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Results: {2,3,4} co-clusters in the data
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Results: {2,3,4} clusters of varieties
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Results: {2,3,4} clusters of sound correspondences

Sound correspondences specific for the Frisian area

Reference [2] [2] [a] [o] [u] [x] [x] [r]
Frisian [I] [i] [i] [E] [E] [j] [z] [x]

Sound correspondences specific for the Limburg area
Reference [r] [r] [k] [n] [n] [w]
Limburg [ö] [K] [x] [ö] [K] [f]

Sound correspondences specific for the Low Saxon area

Reference [@] [@] [@] [-] [a]
Low Saxon [m] [N] [ð] [P] [e]
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To conclude

Bipartite spectral graph partitioning is a very useful method to
simultaneously cluster

varieties and sound correspondences
words and documents
genes and conditions
... and ...

Do you now understand the title?
Bipartite Spectral graph partitioning to co-cluster varieties and
sound correspondences
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Any questions?

Thank You!
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