Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Martijn Wieling

Department of Computational Linguistics, University of Groningen
Seminar in Methodology and Statistics - May 20, 2009

Goal

- Making the title of this presentation understandable!

Bipartite spectral graph partitioning to co-cluster varieties and sound correspondences

Overview

- Why co-clustering?
- Method
- Introduction to eigenvalues and eigenvectors
- Simple clustering
- Co-clustering
- Complete dataset
- Results
- Conclusions

Why co-clustering?

- Research interest: language and dialectal variation
- Important method: cluster similar (dialectal) varieties together
- Problem: clustering varieties does not yield a linguistic basis
- Previous solutions: investigate sound correspondences post hoc (e.g., Heeringa, 2004)
- Co-clustering: clusters varieties and sound correspondences simultaneously
- Eigenvalues and eigenvectors are central in this approach

Graphs and matrices

- A graph is a set of vertices connected with edges:

- A graph can also be represented by its adjacency matrix \boldsymbol{A}

	A	B	C	D
A	0	1	1	1
B	1	0	0	0
C	1	1	0	0
D	0	1	1	0

Eigenvalues and eigenvectors

- The eigenvalues λ and the eigenvectors \boldsymbol{x} of a square matrix \boldsymbol{A} are defined as follows:

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \quad[\Rightarrow(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}]
$$

- In matrix-form:

- This is solved when:

Eigenvalues and eigenvectors

- The eigenvalues λ and the eigenvectors \boldsymbol{x} of a square matrix \boldsymbol{A} are defined as follows:

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \quad[\Rightarrow(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}]
$$

- In matrix-form:

$$
\left[\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- This is solved when:

$$
\begin{aligned}
& \left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}=0 \\
& a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}=0
\end{aligned}
$$

Eigenvalues and eigenvectors

- The eigenvalues λ and the eigenvectors \boldsymbol{x} of a square matrix \boldsymbol{A} are defined as follows:

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \quad[\Rightarrow(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}]
$$

- In matrix-form:

$$
\left[\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- This is solved when:

$$
\begin{aligned}
& \left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}=0 \\
& a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}=0
\end{aligned}
$$

Example of calculating eigenvalues and eigenvectors

- Consider the following example: $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
- Using $(A-\lambda I) x=0$ we get:

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Solved when $\operatorname{det}(\boldsymbol{A})=0:(1-\lambda)^{2}-4=0$
- Using $\lambda_{1}=3$ and $\lambda_{2}=-1$ we obtain $x=$

Example of calculating eigenvalues and eigenvectors

- Consider the following example: $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
- Using $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$ we get:

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Solved when $\operatorname{det}(\boldsymbol{A})=0:(1-\lambda)^{2}-4=0$
- Using $\lambda_{1}=3$ and $\lambda_{2}=-1$ we obtain $\boldsymbol{x}=$

Example of calculating eigenvalues and eigenvectors

- Consider the following example: $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
- Using $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$ we get:

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Solved when $\operatorname{det}(\boldsymbol{A})=0:(1-\lambda)^{2}-4=0$
- Using $\lambda_{1}=3$ and $\lambda_{2}=-1$ we obtain $x=$

Example of calculating eigenvalues and eigenvectors

- Consider the following example: $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
- Using $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$ we get:

$$
\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Solved when $\operatorname{det}(\boldsymbol{A})=0:(1-\lambda)^{2}-4=0$
- Using $\lambda_{1}=3$ and $\lambda_{2}=-1$ we obtain $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Spectrum of a graph

- The spectrum of a graph are the eigenvalues of the adjacency matrix \boldsymbol{A} of the graph
- The spectrum is considered to capture important structural properties of a graph (Chung, 1997)
- Some interesting applications of eigenvalues and eigenvectors:
- Principal Component Analysis (PCA; Duda et al., 2001: 114-117)
- Pagerank (Google; Brin and Page, 1998)
- Partitioning (i.e. clustering; Von Luxburg, 2007)

Example of spectral graph clustering (1/8)

- Consider the matrix \boldsymbol{A} with sound correspondences:

	$[\mathrm{a}] /[\mathrm{i}]$	$[\mathrm{N}] /[\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
$[\mathrm{a}] /[\mathrm{Ci}]$	0	1	1	0	0	0
$[\Lambda \mathrm{\Lambda}] /[\mathrm{i}]$	1	0	1	0	0	0
$[\mathrm{r}][\mathrm{x}]$	1	1	0	1	0	0
$[\mathrm{k}] /[\mathrm{x}]$	0	0	1	0	1	1
$[\mathrm{rr}][\mathrm{R}]$	0	0	0	1	0	1
$[\mathrm{r}] /[\mathrm{B}]$	0	0	0	1	1	0

- In graph-form:

Example of spectral graph clustering (2/8)

- To partition this graph, we have to determine the optimal cut:

- The optimal cut yielding balanced clusters is obtained by finding the eigenvectors of the normalized Laplacian: $L_{n}=D^{-1} L$, with $\boldsymbol{L}=\boldsymbol{D}-\boldsymbol{A}$ and \boldsymbol{D} the degree matrix of \boldsymbol{A} (Shi and Malik, 2000; Von Luxburg, 2007).

Example of spectral graph clustering (3/8)

- The adjacency matrix \boldsymbol{A} :

	$[\mathrm{a}] /[\mathrm{i}]$	$[\Lambda] /[\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
$[\mathrm{a}] /[\mathrm{i}]$	0	1	1	0	0	0
$[\Lambda] /[\mathrm{i}]$	1	0	1	0	0	0
$[\mathrm{r}] /[\mathrm{x}]$	1	1	0	1	0	0
$[\mathrm{k}] /[\mathrm{x}]$	0	0	1	0	1	1
$[\mathrm{r}] /[\mathrm{R}]$	0	0	0	1	0	1
$[\mathrm{rr}] /[\mathrm{b}]$	0	0	0	1	1	0

Example of spectral graph clustering (4/8)

- The Laplacian matrix L :

	$[\mathrm{a}] /[\mathrm{i}]$	$[\Lambda] /[\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
$[\mathrm{a}] /[\mathrm{i}]$	2	-1	-1	0	0	0
$[\Lambda] /[\mathrm{i}]$	-1	2	-1	0	0	0
$[\mathrm{rr}] /[\mathrm{x}]$	-1	-1	3	-1	0	0
$[\mathrm{k}] /[\mathrm{x}]$	0	0	-1	3	-1	-1
$[\mathrm{r}] /[\mathrm{R}]$	0	0	0	-1	2	-1
$[\mathrm{rr}] /[\mathrm{b}]$	0	0	0	-1	-1	2

Example of spectral graph clustering (5/8)

- The normalized Laplacian matrix L_{n} :

	$[\mathrm{a}] /[\mathrm{i}]$	$[\Lambda] /[\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
$[\mathrm{a}] /[\mathrm{i}]$	1	-0.5	-0.5	0	0	0
$[\Lambda] /[\mathrm{i}]$	-0.5	1	-0.5	0	0	0
$[\mathrm{r}] /[\mathrm{x}]$	-0.33	-0.33	1	-0.33	0	0
$[\mathrm{k}] /[\mathrm{x}]$	0	0	-0.33	1	-0.33	-0.33
$[\mathrm{r}] /[\mathrm{R}]$	0	0	0	-0.5	1	-0.5
$[\mathrm{r}] /[\mathrm{b}]$	0	0	0	-0.5	-0.5	1

Example of spectral graph clustering (6/8)

- The eigenvalues λ and eigenvectors \boldsymbol{x} of L_{n} (i.e. $L_{n} \boldsymbol{x}=\lambda \boldsymbol{x}$):
- $\lambda_{1}=0$ with $\boldsymbol{x}=\left[\begin{array}{lll}-0.41-0.41-0.41-0.41-0.41-0.41\end{array}\right]^{\top}$
- $\lambda_{2}=0.21$ with $\boldsymbol{x}=\left[\begin{array}{llll}0.46 & 0.46 & 0.27-0.27-0.46-0.46\end{array}\right]^{T}$
- $\lambda_{3}=1.17$ with $\boldsymbol{x}=\left[\begin{array}{lllll}0.36 & 0.36-0.49-0.49 & 0.36 & 0.36\end{array}\right]^{T}$
- ...
- The first (smallest) eigenvector does not yield clustering information. Does the second?

Example of spectral graph clustering (6/8)

- The eigenvalues λ and eigenvectors \boldsymbol{x} of L_{n} (i.e. $L_{n} \boldsymbol{x}=\lambda \boldsymbol{x}$):
- $\lambda_{1}=0$ with $\boldsymbol{x}=\left[\begin{array}{llll}-0.41-0.41-0.41-0.41-0.41-0.41\end{array}\right]^{T}$
- $\lambda_{2}=0.21$ with $\boldsymbol{x}=\left[\begin{array}{llll}0.46 & 0.46 & 0.27 & -0.27 \\ -0.46-0.46\end{array}\right]^{T}$
- $\lambda_{3}=1.17$ with $\boldsymbol{x}=\left[\begin{array}{lll}0.36 & 0.36-0.49-0.49 & 0.36 \\ 0.36\end{array}\right]^{T}$
- ...
- The first (smallest) eigenvector does not yield clustering information. Does the second? Yes!

Example of spectral graph clustering (7/8)

- If we use the k-means algorithm (i.e. minimize the within-cluster sum of squares; Lloyd, 1982) to cluster the eigenvector in two groups we obtain the following partitioning:

- To cluster in $k>2$ groups we use the second to k (smallest) eigenvectors

Example of spectral graph clustering (8/8)

- To cluster in $k=3$ groups, we use:
- $\lambda_{2}=0.21$ with $\boldsymbol{x}=\left[\begin{array}{llll}0.46 & 0.46 & 0.27-0.27-0.46-0.46\end{array}\right]^{T}$
- $\lambda_{3}=1.17$ with $\boldsymbol{x}=\left[\begin{array}{lll}0.36 & 0.36-0.49-0.49 & 0.36 \\ 0.36\end{array}\right]^{T}$
- We obtain the following clustering:

Example of spectral graph clustering (8/8)

- To cluster in $k=3$ groups, we use:
- $\lambda_{2}=0.21$ with $\boldsymbol{x}=\left[\begin{array}{llll}0.46 & 0.46 & 0.27-0.27 & -0.46-0.46\end{array}\right]^{T}$
- $\lambda_{3}=1.17$ with $\boldsymbol{x}=\left[\begin{array}{lll}0.36 & 0.36-0.49-0.49 & 0.36 \\ 0.36\end{array}\right]^{T}$
- We obtain the following clustering:

Bipartite graphs

- A bipartite graph is a graph whose vertices can be divided in two disjoint sets where every edge connects a vertex from one set to a vertex in another set. Vertices within a set are not connected.
- A matrix representation of a bipartite graph:

	$[\mathrm{a}] /[\mathrm{i}]$	$[\mathrm{N}][\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
Appelscha	1	1	1	0	0	0
Oudega	1	1	1	0	0	0
Zoutkamp	0	0	1	1	0	0
Kerkrade	0	0	0	1	1	1
Appelscha	0	0	0	1	1	1

Example of co-clustering a biparte graph (1/6)

- The (naive) co-clustering procedure is equal to clustering in one dimension (i.e. cluster eigenvector(s) of normalized Laplacian)
- Consider the following graph:

Example of co-clustering a biparte graph (2/6)

- The adjacency matrix \boldsymbol{A} :

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[\wedge]/[i]	$[r] /[x]$	$[k][\mathrm{x}]$	$[r] /[\mathrm{R}]$	[r]/[b]
appelscha	0	0	0	0	0	1	1	1	0	0	0
oudega	0	0	0	0	0	1	1	1	0	0	0
zoutkamp	0	0	0	0	0	0	0	1	1	0	0
kerkrade	0	0	0	0	0	0	0	0	1	1	1
appelscha	0	0	0	0	0	0	0	0	1	1	1
[a]/[i]	$1-$	1	$\overline{0}$	$\overline{0}$	0	+ - 0	0	$\overline{0}$	0	0	0
[\wedge]/[i]	1	1	0	0	0	1 0	0	0	0	0	0
[r]/[x]	1	1	1	0	0	0	0	0	0	0	0
[k]/[x]	0	0	1	1	1	0	0	0	0	0	0
[r$]$ /[R]	0	0	0	1	1	0	0	0	0	0	0
$[r] /[\mathrm{b}]$	0	0	0	1	1	- 0	0	0	0	0	0

Example of co-clustering a biparte graph (3/6)

- The Laplacian matrix L :

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[Λ]/[i]	$[r] /[x]$	[k]/[x]	$[r] /[\mathrm{R}]$	[r]/[b]
appelscha	3	0	0	0	0	-1	-1	-1	0	0	0
oudega	0	3	0	0	0	-1	-1	-1	0	0	0
zoutkamp	0	0	2	0	0	0	0	-1	-1	0	0
kerkrade	0	0	0	3	0	0	0	0	-1	-1	-1
appelscha	0	0	0	0	3	0	0	0	-1	-1	-1
$[\mathrm{a}] / \overline{[i]}{ }^{-}$	-1	-1-	$\overline{0}$	$\overline{0}$	0	2	0	$\overline{0}$	0	0	0
[\wedge]/[i]	-1	-1	0	0	0	0	2	0	0	0	0
[r$]$ /[x]	-1	-1	-1	0	0	0	0	3	0	0	0
[k]/[x]	0	0	-1	-1	-1	0	0	0	3	0	0
$[r] /[\mathrm{R}]$	0	0	0	-1	-1	0	0	0	0	2	0
$[r] /[\mathrm{b}]$	0	0	0	-1	-1	0	0	0	0	0	2

Example of co-clustering a biparte graph (4/6)

- The normalized Laplacian matrix L_{n} :

	appelscha	oudega	zoutkamp	kerkrade	vaals	[a]/[i]	[Λ]/[i]	$[r][/ x]$	[k]/[x]	$[r] /[\mathrm{R}]$	$[r] /[\mathrm{b}]$
appelscha	1	0	0	0	0	-0.33	-0.33	-0.33	0	0	0
oudega	0	1	0	0	0	-0.33	-0.33	-0.33	0	0	0
zoutkamp	0	0	1	0	0	0	0	-0.5	-0.5	0	0
kerkrade	0	0	0	1	0	0	0	0	-0.33	-0.33	-0.33
appelscha	0	0	0	0	1	0	0	0	-0.33	-0.33	-0.33
$[\mathrm{a}] / \overline{[i]}{ }^{-}$	-0.5	-0. 5	0	0	$\overline{0}$	1	$\overline{0}$	0	0	O	0
[\wedge]/[i]	-0.5	-0.5	0	0	0	0	1	0	0	0	0
[r]/[x]	-0.33	-0.33	-0.33	0	0	0	0	1	0	0	0
[k]/[x]	0	0	-0.33	-0.33	-0.33	0	0	0	1	0	0
$[r] /[R]$	0	0	0	-0.5	-0.5	0	0	0	0	1	0
$[r] /[\mathrm{b}]$	0	0	0	-0.5	-0.5	0	0	0	0	0	1

Example of co-clustering a biparte graph (5/6)

- To cluster in $k=2$ groups, we use:
- $\lambda_{2}=.057, \boldsymbol{x}=[.32-.320 .32 .32-.34-.34-.23 .23 .34 .34]^{T}$

Example of co-clustering a biparte graph (5/6)

- To cluster in $k=2$ groups, we use:

$$
\text { - } \lambda_{2}=.057, \boldsymbol{x}=[.32-.320 .32 .32-.34-.34-.23 .23 .34 .34]^{T}
$$

- We obtain the following co-clustering:

Example of co-clustering a biparte graph (6/6)

- To cluster in $k=3$ groups, we use:
- $\lambda_{2}=.057, \boldsymbol{x}=[.32-.320 .32 .32-.34-.34-.23 .23 .34 .34]^{T}$
- $\lambda_{3}=.53, \boldsymbol{x}=[.12 .12-.7 \text {. 12 . 12. . 25 . 25-. } 33-.33 .25 .25]^{T}$

Example of co-clustering a biparte graph (6/6)

- To cluster in $k=3$ groups, we use:
- $\lambda_{2}=.057, \boldsymbol{x}=[.32-.320-32.32-.34-.34-.23 \text {. } 23 \text {. } 34.34]^{T}$
- $\lambda_{3}=.53, \boldsymbol{x}=\left[.12 .12-.7\right.$. 12. 12 . 25 . 25-..33-.33 . 25 . 25] ${ }^{T}$
- We obtain the following co-clustering:

A faster method

- The previous method is relatively slow due to the use of the large (sparse) matrix \boldsymbol{A} of size $(n+m) \times(n+m)$
- The matrix \boldsymbol{A}^{\prime} contains the same information, but is more dense (size: $n \times m$):

	$[\mathrm{a}] /[\mathrm{i}]$	$[\mathrm{N}] /[\mathrm{i}]$	$[\mathrm{r}] /[\mathrm{x}]$	$[\mathrm{k}] /[\mathrm{x}]$	$[\mathrm{r}] /[\mathrm{R}]$	$[\mathrm{r}] /[\mathrm{b}]$
Appelscha	1	1	1	0	0	0
Oudega	1	1	1	0	0	0
Zoutkamp	0	0	1	1	0	0
Kerkrade	0	0	0	1	1	1
Appelscha	0	0	0	1	1	1

- The singular value decomposition (SVD) of $\boldsymbol{A}_{n}^{\prime}$ also results in equivalent clustering information and is quicker to compute (Dhillon, 2001)

Complete dataset

- Alignments of pronunciations of 562 words for 424 varieties in the Netherlands against a reference pronunciation
- Pronunciations originate from the GTRP (Goeman and Taeldeman, 1996; Van den Berg, 2003; Wieling et al., 2007)
- The pronunciations of Delft were used as the reference
- Alignments were obtained using the Levenshtein algorithm using a Pointwise Mutual Information procedure (Wieling et al., 2009)
- We generated a bipartite graph of varieties v and sound correspondences s
- There is an edge between v_{i} and s_{j} iff freq $\left(s_{j}\right.$ in $\left.v_{i}\right)>0$
- All the following co-clustering results are obtained applying the fast SVD method

Distribution of sites

Results: $\{2,3,4\}$ co-clusters in the data

Results: $\{2,3,4\}$ clusters of varieties

Results: $\{2,3,4\}$ clusters of sound correspondences

- Sound correspondences specific for the Frisian area

Reference	$[\wedge]$	$[\wedge]$	$[\mathrm{a}]$	$[\mathrm{o}]$	$[\mathrm{u}]$	$[\mathrm{x}]$	$[\mathrm{x}]$	$[\mathrm{r}]$
Frisian	$[\mathrm{I}]$	$[\mathrm{i}]$	$[\mathrm{i}]$	$[\varepsilon]$	$[\varepsilon]$	$[\mathrm{j}]$	$[\mathrm{z}]$	$[\mathrm{x}]$

- Sound correspondences specific for the Limburg area

$$
\begin{array}{l|llllll}
\text { Reference } & {[\mathrm{r}]} & {[\mathrm{r}]} & {[\mathrm{k}]} & {[\mathrm{n}]} & {[\mathrm{n}]} & {[\mathrm{w}]} \\
\hline \text { Limburg } & {[\mathrm{R}]} & {[\mathrm{B}]} & {[\mathrm{x}]} & {[\mathrm{R}]} & {[\mathrm{B}]} & {[\mathrm{f}]}
\end{array}
$$

- Sound correspondences specific for the Low Saxon area

Reference	$[ə]$	$[ə]$	$[\ni]$	$[-]$	$[\mathrm{a}]$
Low Saxon	$[\mathrm{m}]$	$[\mathrm{\eta}]$	$[\mathrm{N}]$	$[\mathrm{P}]$	$[\mathrm{e}]$

To conclude

- Bipartite spectral graph partitioning is a very useful method to simultaneously cluster
- varieties and sound correspondences
- words and documents
- genes and conditions
- ... and ...
- Do you now understand the title?
- Bipartite Spectral graph partitioning to co-cluster varieties and sound correspondences

To conclude

- Bipartite spectral graph partitioning is a very useful method to simultaneously cluster
- varieties and sound correspondences
- words and documents
- genes and conditions
- ... and ...
- Do you now understand the title?
- Bipartite Spectral graph partitioning to co-cluster varieties and sound correspondences

Any questions?

Thank You!

References

- Boudewijn van den Berg. 2003. Phonology \& Morphology of Dutch \& Frisian Dialects in 1.1 million transcriptions. Goeman-Taeldeman-Van Reenen project 1980-1995, Meertens Instituut Electronic Publications in Linguistics 3. Meertens Instituut (CD-ROM), Amsterdam.
- Sergey Brin, and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computers Networks and ISDN Systems, 30(1-7):107-117.
- Fan Chung. 1997. Spectral Graph Theory. American Mathematical Society.
- Inderjit Dhillon. 2001. Co-clustering documents and words using bipartite spectral graph partitioning. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 269-274. ACM New York.
- Richard Duda, Peter Hart, and David Stork. 2001. Pattern Classification. Wiley New York.
- Ton Goeman, and Johan Taeldeman. 1996. Fonologie en morfologie van de Nederlandse dialecten. Een nieuwe materiaalverzameling en twee nieuwe atlasprojecten. Taal en Tongval, 48:38-59.
- Wilbert Heeringa. 2004. Measuring Dialect Pronunciation Differences using Levenshtein Distance. Ph.D. thesis, Rijksuniversiteit Groningen.
- Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129-137.
- Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing, 17(4):495-416.
- Jianbo Shi, and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8):888-905.
- Martijn Wieling, Wilbert Heeringa, and John Nerbonne. 2007. An aggregate analysis of pronunciation in the Goeman-Taeldeman-Van Reenen-Project data. Taal en Tongval, 59(1):84-116.
- Martijn Wieling, Jelena Prokić, and John Nerbonne. 2009. Evaluating the pairwise string alignment of pronunciations. In: Lars Borin and Piroska Lendvai (eds.) Language Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education (LaTeCH - SHELT\&R 2009) Workshop at the 12th Meeting of the European Chapter of the Association for Computational Linguistics. Athens, 30 March 2009, pp. 26-34.

