Examples of Comparison

Application

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comparison of Bayesian and Frequentist Inferences

Xuchen Yao

EMLCT University of Groningen

11 March 2009

Examples of Comparison

Application

Summary

Outline

Introduction

Introducing Tomas Bayes the Interpretation of Probability

Examples of Comparison

Mean Proportion

Application

Introduction •0 •0 Examples of Comparison

Application

Summary

Outline

Introduction Introducing Tomas Bayes the Interpretation of Probabili

Examples of Comparison Mean Proportion

Application

Examples of Comparison

Application

Summary

(British mathematician, c. 1702 – 7 April 1761)

Figure: The correct identification of this portrait has been questioned

J. Bayes.

Figure: Signature

Figure: Another signature

Examples of Comparison

Application

Summary

(British mathematician, c. 1702 – 7 April 1761)

Figure: The correct identification of this portrait has been questioned

J. Bayes.

Figure: Signature

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

Figure: Another signature

Introduction oo •o Examples of Comparison

Applicatio

Summary

Outline

Introduction Introducing Tomas Bayes the Interpretation of Probability

Examples of Comparison Mean

Proportion

Application

Examples of Comparison

Application

Summary

Two Schools of Views

the Frequentist

- $P(x) \approx \frac{n_x}{n_t}$
- an event's probability is the limit of its relative frequency in a large number of trials.
- a long-run fraction: $P(x) = \lim_{n_t \to \infty} \frac{n_x}{n_t}$

Bayesian

- $P(H|D) = \frac{P(D|H)P(H)}{P(D)}$
- the probability is a measure of a state of knowledge.
- a degree of believability.

Examples of Comparison

Application

Summary

Two Schools of Views

the Frequentist

- $P(x) \approx \frac{n_x}{n_t}$
- an event's probability is the limit of its relative frequency in a large number of trials.
- a long-run fraction: $P(x) = \lim_{n_t \to \infty} \frac{n_x}{n_t}$

Bayesian

•
$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

- the probability is a measure of a state of knowledge.
- a degree of believability.

Examples of Comparison

Application

Summary

Outline

ntroduction Introducing Tomas Bayes the Interpretation of Probability

Examples of Comparison Mean Proportion

Application

Examples of Comparison

Application

Summary

Calculation and Estimation

the average sentence length of a book

calculation

- Digital text
- Sentence segmenter

estimation

- Frequentist
- Bayesian

Examples of Comparison

Application

Summary

Calculation and Estimation

the average sentence length of a book

calculation

- Digital text
- Sentence segmenter

estimation

- Frequentist
- Bayesian

Examples of Comparison

Application

Summary

the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls $\{5\}$. Every time they do something pretty, even if they're not much to look at, or even if they're sort of stupid, you fall half in love with them, and then you never know where the hell you are $\{38\}$. Girls $\{1\}$. Jesus Christ $\{2\}$. They can drive you crazy $\{5\}$. They really can $\{3\}$.

Frequentist

- 5 sentences, with length [5, 38, 1, 2, 5, 3]
- Central Limit Theorem: as *n* increases, $\overline{X}_n = S_n/n = (X_1 + \cdots + X_n)/n \sim N(\mu, \frac{\sigma^2}{n})$
- Frequentist estimation: $\mu = 9.0, \sigma = 35.0$

Examples of Comparison

Application

Summary

the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls $\{5\}$. Every time they do something pretty, even if they're not much to look at, or even if they're sort of stupid, you fall half in love with them, and then you never know where the hell you are $\{38\}$. Girls $\{1\}$. Jesus Christ $\{2\}$. They can drive you crazy $\{5\}$. They really can $\{3\}$.

Frequentist

- 5 sentences, with length [5, 38, 1, 2, 5, 3]
- Central Limit Theorem: as *n* increases, $\overline{X}_n = S_n/n = (X_1 + \cdots + X_n)/n \sim N(\mu, \frac{\sigma^2}{n})$
- Frequentist estimation: $\mu = 9.0, \sigma = 35.0$

Examples of Comparison

Application

э

Summary

the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls $\{5\}$. Every time they do something pretty, even if they're not much to look at, or even if they're sort of stupid, you fall half in love with them, and then you never know where the hell you are $\{38\}$. Girls $\{1\}$. Jesus Christ $\{2\}$. They can drive you crazy $\{5\}$. They really can $\{3\}$.

Frequentist

- 5 sentences, with length [5, 38, 1, 2, 5, 3]
- Central Limit Theorem: as *n* increases, $\overline{X}_n = S_n/n = (X_1 + \cdots + X_n)/n \sim N(\mu, \frac{\sigma^2}{n})$
- Frequentist estimation: $\mu = 9.0, \sigma = 35.0$

Examples of Comparison

Application

Summary

the Bayesian Approach the prior knowledge of sentence length?

Search "sentence length distribution"

AS OF JUNE 30, FISCAL YEARS 2004 - 2008										
SENTENCE LENGTH	FY 2004		FY 2005		FY 2006		FY 2007		FY 2008	
SETTEMENT LENOT	Number	Percent								
Shock Incarceration (Court Ordered)	118	0.5%	114	0.5%	134	0.6%	129	0.5%	123	0.5%
YOA	1,519	6.3%	1,397	5.9%	1,412	6.0%	1,374	5.8%	1442	5.8%
3 Months or Less	2	0.0%	3	0.0%	2	0.0%	2	0.0%	0	0.0%
3 Months Day-1 Year	480	2.0%	562	2.4%	415	1.8%	449	1.9%	611	2.4%
1 Year	431	1.8%	421	1.8%	451	1.9%	434	1.8%	575	2.3%
1 Years Day-2 Years	1,329	5.6%	1,394	5.9%	1,236	5.3%	1,204	5.0%	1368	5.5%
2 Years 1 Day-3 Years	1,835	7.7%	1,795	7.6%	1,796	7.7%	1,898	7.9%	1945	7.8%
3 Years Day-4 Years	868	3.6%	912	3.9%	843	3.6%	882	3.7%	911	3.6%
4 Years Day-5 Years	2,423	10.1%	2,215	9.4%	2,164	9.3%	2,256	9.4%	2349	9.4%
5 Years Day-6 Years	874	3.7%	799	3,4%	769	3.3%	768	3.2%	820	3.3%
6 Years Day-7 Years	877	3.7%	891	3.8%	915	3.9%	954	4.0%	1000	4.0%
7 Years 1 Day-8 Years	911	3.8%	902	3.8%	913	3.9%	931	3.9%	979	3.9%
8 Years Day-9 Years	330	1.4%	322	1.4%	295	1.3%	318	1.3%	329	1.3%
9 Years 1 Day-10 Years	2,495	10.4%	2,524	10.7%	2,512	10.7%	2,468	10.3%	2504	10.0%
10 Years 1 Day-20 Years	4,310	18.0%	4,347	18,4%	4,499	19.2%	4,734	19.8%	4935	19.7%
20 Years 1 Day-30 Years	2,194	9.2%	2,104	8.9%	2,073	8.9%	2,071	8.7%	2084	8.3%
Over 30 Years	883	3.7%	880	3.7%	881	3.8%	904	3.8%	932	3.7%
Life W/10 Yr. Parole Eligibility	383	1.6%	379	1.6%	357	1.5%	352	1.5%	341	1.4%
Life W/20 Yr. Parole Eligibility	8.59	3.6%	850	3.6%	834	3.6%	833	3.5%	829	3.3%
Life W/30 Yr. Parole Eligibility	136	0.6%	133	0.6%	131	0.6%	131	0.5%	128	0.5%
Life W/No Parole Eligibility	554	2.3%	60.5	2.6%	663	2.8%	705	3.0%	771	3.1%
Death	69	0.3%	71	0.3%	65	0.3%	58	0.2%	56	0.2%
Non-Jurisdictional Inmates*	43	0.2%	37	0.2%	30	0.1%	32	0.1%	34	0.1%
TOTAL	23,923	100.0%	23,657	100.0%	23,390	100.0%	23,887	100.0%	25,066	100.0%
AVERAGE SENTENCE LENGTH**	11 Years	9 Months	11 Years	9 Months	11 Years	9 Months	11 Years	11 Month	11 Years	8 Months

SENTENCE LENGTH DISTRIBUTION OF TOTAL INMATE POPULATION AS OF JUNE 30, FISCAL YEARS 2004 - 2008

Figure: Sentence length distribution of the prisoners:-

Examples of Comparison

Application

Summary

the Bayesian Approach the prior knowledge of sentence length?

Search "sentence length distribution"

AS OF JUNE 30, FISCAL YEARS 2004 - 2008										
SENTENCE LENGTH	FY 2004		FY 2005		FY 2006		FY 2007		FY 2008	
SENTENCE LENGTH	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Shock Incarceration (Court Ordered)	118	0.5%	114	0.5%	134	0.6%	129	0.5%	123	0.5%
YOA	1,519	6.3%	1,397	5.9%	1,412	6.0%	1,374	5.8%	1442	5.8%
3 Months or Less	2	0.0%	3	0.0%	2	0.0%	2	0.0%	0	0.0%
3 Months I Day-1 Year	480	2.0%	562	2.4%	415	1.8%	449	1.9%	611	2.4%
1 Year	431	1.8%	421	1.8%	451	1.9%	434	1.8%	575	2.3%
1 Years 1 Day-2 Years	1,329	5.6%	1,394	5.9%	1,236	5.3%	1,204	5.0%	1368	5.5%
2 Years 1 Day-3 Years	1,835	7.7%	1,795	7.6%	1,796	7.7%	1,898	7.9%	1945	7.8%
3 Years Day-4 Years	868	3.6%	912	3.9%	843	3.6%	882	3.7%	911	3.6%
4 Years 1 Day-5 Years	2,423	10.1%	2,215	9.4%	2,164	9.3%	2,256	9.4%	2349	9.4%
5 Years 1 Day-6 Years	874	3.7%	799	3,4%	769	3.3%	768	3.2%	820	3.3%
6 Years 1 Day-7 Years	877	3.7%	891	3.8%	915	3.9%	954	4.0%	1000	4.0%
7 Years 1 Day-8 Years	911	3.8%	902	3.8%	913	3.9%	931	3.9%	979	3.9%
8 Years 1 Day-9 Years	330	1.4%	322	1.4%	295	1.3%	318	1.3%	329	1.3%
9 Years 1 Day-10 Years	2,495	10.4%	2,524	10.7%	2,512	10.7%	2,468	10.3%	2504	10.0%
10 Years 1 Day-20 Years	4,310	18.0%	4,347	18.4%	4,499	19.2%	4,734	19.8%	4935	19.7%
20 Years 1 Day-30 Years	2,194	9.2%	2,104	8.9%	2,073	8.9%	2,071	8.7%	2084	8.3%
Over 30 Years	883	3.7%	880	3.7%	881	3.8%	904	3.8%	932	3.7%
Life W/10 Yr. Parole Eligibility	383	1.6%	379	1.6%	357	1.5%	352	1.5%	341	1.4%
Life W/20 Yr. Parole Eligibility	8.59	3.6%	850	3.6%	834	3.6%	833	3.5%	829	3.3%
Life W/30 Yr. Parole Eligibility	136	0.6%	133	0.6%	131	0.6%	131	0.5%	128	0.5%
Life W/No Parole Eligibility	554	2.3%	60.5	2.6%	663	2.8%	705	3.0%	771	3.1%
Death	69	0.3%	71	0.3%	65	0.3%	58	0.2%	56	0.2%
Non-Jurisdictional Inmates*	43	0.2%	37	0.2%	30	0.1%	32	0.1%	34	0.1%
TOTAL	23,923	100.0%	23,657	100.0%	23,390	100.0%	23,887	100.0%	25,066	100.0%
AVERAGE SENTENCE LENGTH**	11 Years	9 Months	11 Years	9 Months	11 Years	9 Months	11 Years	l I Month	11 Years	8 Months

SENTENCE LENGTH DISTRIBUTION OF TOTAL INMATE POPULATION AS OF JUNE 30, FISCAL YEARS 2004 - 2008

Figure: Sentence length distribution of the prisoners:-(

Summary

the Prior Knowledge of Sentence Length log-normal distribution

- Ref: Contributions to the Science of Text and Language: Word Length Studies and Related Issues, By *Peter Grzybek*
- Sentence length has a right skewness. It cannot be approximated by normal distribution. Thus log-normal distribution is proposed and testified.

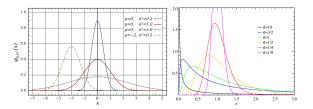


Figure: Normal and log-normal distribution

Examples of Comparison

Application

Summary

the Problem Rephrased

 $P(\mu|X) = \frac{P(X|\mu)P(\mu)}{P(X)}$

- $P(X|\mu)$: observation in normal distribution.
- $P(\mu)$: prior knowledge in log-normal distribution.

if $P(\mu) \propto log N(\mu, \sigma^2)$, then $P(\mu_{log}) \propto N(\mu, \sigma^2)$

• $P(X_{log}|\mu_{log}) \propto e^{-rac{1}{2\sigma^2/n}(X_{log}-\mu)^2}$

•
$$P(\mu_{log}) \propto e^{-\frac{1}{2s^2}(\mu - m)}$$

• The posterior distribution will also be normal.

Examples of Comparison

Application

Summary

the Problem Rephrased

 $P(\mu|X) = \frac{P(X|\mu)P(\mu)}{P(X)}$

- $P(X|\mu)$: observation in normal distribution.
- $P(\mu)$: prior knowledge in log-normal distribution.

if ${\it P}(\mu) \propto {\it logN}(\mu,\sigma^2)$, then ${\it P}(\mu_{\it log}) \propto {\it N}(\mu,\sigma^2)$

•
$$P(X_{log}|\mu_{log}) \propto e^{-rac{1}{2\sigma^2/n}(X_{log}-\mu)^2}$$

•
$$P(\mu_{log}) \propto e^{-rac{1}{2s^2}(\mu-m)^2}$$

• The posterior distribution will also be normal.

Examples of Comparison

Application

Summary

the Posterior Probability

$$\begin{split} & P(\mu_{log}|X_{log}) \propto P(X_{log}|\mu_{log})P(\mu_{log}) \propto \\ & e^{-\frac{1}{2\sigma^2}(X_{log}-\mu)^2} e^{-\frac{1}{2s^2}(\mu-m)^2} \propto e^{-\frac{1}{2\sigma^2s^2/(\sigma^2+s^2)}(\mu-\frac{\sigma^2m+s^2X_{log}}{\sigma^2+s^2})^2} \end{split}$$

Plug in the sample mean, we get the posterior mean and variance: $m_{pos} = \frac{\frac{\sigma^2}{n}m + s^2 \overline{X_{log}}}{\frac{\sigma^2}{n} + s^2} \qquad s_{pos}^2 = \frac{\frac{\sigma^2}{n}s^2}{\frac{\sigma^2}{n} + s^2}$

- n: the number of samples
- X_{log}: the natural logarithm of the sample
- $\overline{X_{log}}$: the mean of X_{log}
- (*m*, *s*²): the prior estimation of the mean and variance of sentence length
- σ^2 : the variance of the sentence length we already know / university of groningen

Examples of Comparison

Application

Summary

(ロ) (型) (E) (E) (E) (O)

the Posterior Probability

$$\begin{split} & P(\mu_{log}|X_{log}) \propto P(X_{log}|\mu_{log}) P(\mu_{log}) \propto \\ & e^{-\frac{1}{2\sigma^2}(X_{log}-\mu)^2} e^{-\frac{1}{2s^2}(\mu-m)^2} \propto e^{-\frac{1}{2\sigma^2s^2/(\sigma^2+s^2)}(\mu-\frac{\sigma^2m+s^2X_{log}}{\sigma^2+s^2})^2} \end{split}$$

Plug in the sample mean, we get the posterior mean and variance: $m_{pos} = \frac{\frac{\sigma^2}{n}m + s^2 \overline{X_{log}}}{\frac{\sigma^2}{n} + s^2} \qquad s_{pos}^2 = \frac{\frac{\sigma^2}{n}s^2}{\frac{\sigma^2}{n} + s^2}$

- n: the number of samples
- X_{log}: the natural logarithm of the sample
- $\overline{X_{log}}$: the mean of X_{log}
- (m, s^2) : the prior estimation of the mean and variance of sentence length
- σ^2 : the variance of the sentence length we already know / $m^{\text{university of groningen}}$

Examples of Comparison

Applicatio

Summary

university of groningen

э

イロト イロト イヨト イヨト

Result

Assign values

- n: 5
- X_{log}: ln([5, 38, 1, 2, 5, 3])
- m: 10, s: 10
- *σ*: 9.73
- Result: *m*_{pos=13.57}

Comparison

- Frequentist: 9.0
- Bayesian: 13.57
- True value: 13.64

Examples of Comparison

Applicatio

Summary

Result

Assign values

- n: 5
- X_{log}: ln([5, 38, 1, 2, 5, 3])
- m: 10, s: 10
- *σ*: 9.73
- Result: *m*_{pos=13.57}

Comparison

- Frequentist: 9.0
- Bayesian: 13.57
- True value: 13.64

・ロト ・四ト ・モト ・モト

э

Confidence Interval vs. Credible Interval

Frequentist: confidence interval

•
$$\overline{X} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

- A frequentist 90% confidence interval of 35-45 means that with a large number of repeated samples, 90% of the calculated confidence intervals would include the true value of the parameter.
- The probability that the parameter is inside the given interval (say, 35-45) is either 0 or 1

Bayesian: credible interval

- $m_{pos} \pm z_{\frac{\alpha}{2}} \times s_{pos}$
- "following the experiment, a 90% credible interval for the parameter t is 35-45" means that the posterior probability that t lies in the interval from 35 to 45 is 0.9.

・ロト ・四ト ・モト ・モト

э

Confidence Interval vs. Credible Interval

Frequentist: confidence interval

•
$$\overline{X} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

- A frequentist 90% confidence interval of 35-45 means that with a large number of repeated samples, 90% of the calculated confidence intervals would include the true value of the parameter.
- The probability that the parameter is inside the given interval (say, 35-45) is either 0 or 1

Bayesian: credible interval

- $m_{pos} \pm z_{\frac{\alpha}{2}} \times s_{pos}$
- "following the experiment, a 90% credible interval for the parameter t is 35-45" means that the posterior probability that t lies in the interval from 35 to 45 is 0.9.

Examples of Comparison

Application

Summary

What Others Say

- "probability"_{confidence interval} = long-run fraction having this characteristic.
- "probability"_{credible interval} = degree of believability.
- A frequentist is a person whose long-run ambition is to be wrong 5% of the time.
- A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.
- $P(mule|donkey) \stackrel{?}{=} \frac{P(horse)P(donkey|horse)}{P(donkey)}$

Examples of Comparison

Application

Summary

What Others Say

- "probability"_{confidence interval} = long-run fraction having this characteristic.
- "probability"_{credible interval} = degree of believability.
- A frequentist is a person whose long-run ambition is to be wrong 5% of the time.
- A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.
- $P(mule|donkey) \stackrel{?}{=} \frac{P(horse)P(donkey|horse)}{P(donkey)}$

Examples of Comparison

Application

(日)

Summary

What Others Say by Charles Annis

- "probability"_{confidence interval} = long-run fraction having this characteristic.
- "probability"_{credible interval} = degree of believability.
- A frequentist is a person whose long-run ambition is to be wrong 5% of the time.
- A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.
- $P(mule|donkey) \stackrel{?}{=} \frac{P(horse)P(donkey|horse)}{P(donkey)}$

Examples of Comparison

Application

Summary

Warning

- This is only a toy example. In a real world application, the sample size *n* must be big enough to ensure that the sample has a normal distribution (Central Limit Theory).
- Not every distribution is normal.
- According to the Law of Large Numbers, frequentist method is also capable of approximating the true value.
- σ is known in advance in this example, which makes it inapplicable. We can estimate σ from the sample data, then extra uncertainty is incorporated. Thus in estimating the credible interval, we should use a *t* distribution, rather than a normal distribution. $(m_{pos} \pm t_{\frac{\alpha}{2}} \times s_{pos})$

Examples of Comparison

Application

Summary

Outline

ntroduction Introducing Tomas Bayes the Interpretation of Probability

Examples of Comparison

Vlean

Proportion

Application

(日) (同) (日) (日)

э

Estimating the Proportion in a Binomial Distribution

the binomial distribution

- the discrete probability distribution of the number of successes in a sequence of *n* independent yes/no experiments.
- *X* ~ *B*(*n*, *p*)

•
$$Pr(X = k) = \binom{n}{k}p(1-p)^{n-k}$$

- E(X) = np
- Var(x) = np(1-p)

Examples of Comparison

Application

Summary

the Frequentist Approach

- x is the number of successes in n trials
- $\hat{p_f} = \frac{x}{n}$
- $MSE(\hat{p_f}) = bias(\hat{p_f})^2 + Var(\hat{p_f}) = \frac{\hat{p_f}(1-\hat{p_f})}{n}$
- suppose n = 16, x = 10, then $MSE(\hat{p_f}) = 0.0146484375$

Examples of Comparison

Application

Summary

the Bayesian Approach

the prior: the Beta distribution $f(p; a, b) = \frac{1}{B(a,b)}p^{a-1}(1-p)^{b-1} \sim Beta(a, b)$ $E(p) = \frac{a}{a+b}$

the postirior: the Beta distribution $f(p|x) \propto p^{a+x-1}(1-p)^{b+n-x-1} \sim Beta(a+x, b+n-x)$

```
suppose a = b = 1, then

\hat{p_B} = \frac{1+x}{2+n}

MSE(\hat{p_B}) = (\frac{1-2\hat{p_B}}{n+2})^2 + (\frac{1}{n+2})^2 n \hat{p_B} (1-\hat{p_B})

still suppose n = 16, x = 10, then

MSE(\hat{p_B}) = 0.011888431641518061
```


Examples of Comparison

Application

Summary

the Bayesian Approach

the prior: the Beta distribution $f(p; a, b) = \frac{1}{B(a,b)}p^{a-1}(1-p)^{b-1} \sim Beta(a, b)$ $E(p) = \frac{a}{a+b}$

the postirior: the Beta distribution $f(p|x) \propto p^{a+x-1}(1-p)^{b+n-x-1} \sim Beta(a+x, b+n-x)$

suppose
$$a = b = 1$$
, then
 $\hat{p_B} = \frac{1+x}{2+n}$
 $MSE(\hat{p_B}) = (\frac{1-2\hat{p_B}}{n+2})^2 + (\frac{1}{n+2})^2 n\hat{p_B}(1-\hat{p_B})^2$
still suppose $n = 16, x = 10$, then
 $MSE(\hat{p_B}) = 0.011888431641518061$

Examples of Comparison

Application

Summary

the Bayesian Approach

the prior: the Beta distribution $f(p; a, b) = \frac{1}{B(a,b)}p^{a-1}(1-p)^{b-1} \sim Beta(a, b)$ $E(p) = \frac{a}{a+b}$

the postirior: the Beta distribution $f(p|x) \propto p^{a+x-1}(1-p)^{b+n-x-1} \sim Beta(a+x, b+n-x)$

suppose
$$a = b = 1$$
, then
 $\hat{p_B} = \frac{1+x}{2+n}$
 $MSE(\hat{p_B}) = (\frac{1-2\hat{p_B}}{n+2})^2 + (\frac{1}{n+2})^2 n \hat{p_B}(1-\hat{p_B})$
still suppose $n = 16, x = 10$, then
 $MSE(\hat{p_B}) = 0.011888431641518061$

Examples of Comparison

Application

Summary

Comparison of Proportion

	proportion	MSE
frequentist	0.625	0.015
Bayesian	0.611	0.012

Table: Estimation of proportion and MSE

Examples of Comparison

Application

Summary

Authorship Detection

the Federalist Papers, by Alexander Hamilton, James Madison and John Jay

Figure: the Federalist

- the ratification of the United States Constitution
- 85 articles: Hamilton (51), Madison (29), Jay (5)
- 12 are published under "Publius".
- Statistical analysis based on word frequencies and writing styles.
- All 12 were written by Madison.

Examples of Comparison

Application

Summary

Authorship Detection

the Federalist Papers, by Alexander Hamilton, James Madison and John Jay

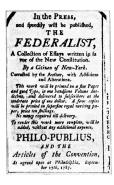


Figure: the Federalist

- the ratification of the United States Constitution
- 85 articles: Hamilton (51), Madison (29), Jay (5)
- 12 are published under "Publius".
- Statistical analysis based on word frequencies and writing styles.
- All 12 were written by Madison.

Examples of Comparison

Application

Summary

Bayesian POS Tagger

Combining Bayes and HMM

•
$$\hat{T} = argmax P(T|W) = argmax \frac{P(T)P(W|T)}{P(W)} = argmax P(T)P(W|T)$$
, where T: possible tags, W: word $T \in \tau$

• Incorporating the trigram model:

$$P(T)P(W|T) = P(t_1)P(t_2|t_1)\prod_{i=3}^{n} P(t_i|t_{i-2}t_{i-1})[\prod_{i=1}^{n} P(w_i|t_i)]$$

- counting:
- $P(t_i|t_{i-2}t_{i-1}) = \frac{c(t_{i-2}t_{i-1})}{c(t_{i-2}t_{i-1}t_i)}$ and $P(w_i|t_i) = \frac{c(w_it_i)}{c(t_i)}$
- smoothing...

Examples of Comparison

Application

Summary

Bayesian POS Tagger

Combining Bayes and HMM

•
$$\hat{T} = argmax P(T|W) = argmax \frac{P(T)P(W|T)}{P(W)} = argmax P(T)P(W|T)$$
, where T: possible tags, W: word $T \in \tau$

• Incorporating the trigram model:

$$P(T)P(W|T) = P(t_1)P(t_2|t_1)\prod_{i=3}^{n}P(t_i|t_{i-2}t_{i-1})[\prod_{i=1}^{n}P(w_i|t_i)]$$

• counting:

•
$$P(t_i|t_{i-2}t_{i-1}) = \frac{c(t_{i-2}t_{i-1})}{c(t_{i-2}t_{i-1}t_i)}$$
 and $P(w_i|t_i) = \frac{c(w_it_i)}{c(t_i)}$

• smoothing...

Examples of Comparison

Application

Summary

university of groningen

э

(日)

Bayesian POS Tagger

Combining Bayes and HMM

•
$$\hat{T} = argmaxP(T|W) = argmax \frac{P(T)P(W|T)}{P(W)} = argmaxP(T)P(W|T)$$
, where T: possible tags, W: word $T \in \tau$

• Incorporating the trigram model:

$$P(T)P(W|T) = P(t_1)P(t_2|t_1)\prod_{i=3}^{n}P(t_i|t_{i-2}t_{i-1})[\prod_{i=1}^{n}P(w_i|t_i)]$$

• counting:

•

- $P(t_i|t_{i-2}t_{i-1}) = \frac{c(t_{i-2}t_{i-1})}{c(t_{i-2}t_{i-1}t_i)}$ and $P(w_i|t_i) = \frac{c(w_it_i)}{c(t_i)}$
- smoothing...

Examples of Comparisor

Application

Summary

Word Sense Disambiguation Naive Bayesian Classifier

sentence length distribution of {text, prisoners}

- *sentence.n.01*: a string of words satisfying the grammatical rules of a language
- *conviction.n.02*: a final judgment of guilty in a criminal case and the punishment that is imposed
- prison_term.n.01:the period of time a prisoner is imprisoned
- $\hat{S} = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} P(Sense|Context) = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} P(S)P(C|S) = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} [logP(S) + logP(C|S)]$
 - Bayesian network for WordNet

Examples of Comparison

Application

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ

Summary

Word Sense Disambiguation Naive Bayesian Classifier

sentence length distribution of {text, prisoners}

- *sentence.n.01*: a string of words satisfying the grammatical rules of a language
- *conviction.n.02*: a final judgment of guilty in a criminal case and the punishment that is imposed
- prison_term.n.01:the period of time a prisoner is imprisoned
- $\hat{S} = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} P(Sense|Context) = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} P(S)P(C|S) = \underset{\substack{S \in \tau \\ S \in \tau}}{\operatorname{argmax}} [logP(S) + logP(C|S)]$
 - Bayesian network for WordNet

Examples of Comparison

Application

Summary

Others

- ASR
- OCR
- IR
-

Examples of Comparison

Application

Summary

Summary

- Frequentist vs. Bayesian
 - comparison of mean/proportion
 - confidence interval vs. credible interval
- a priori knowledge, a posteriori probability
- Applications
 - Authorship detection, HMM & Bayes (POS tagger, ASR), WSD, IR, OCR.

