Qualitative vs Quantitative research & Multilevel methods

How to include context in your research

April 2005
Marjolein Deunk
Content

• What is qualitative analysis and how does it differ from quantitative analysis?

• How to combine qualitative and quantitative research?

• Statistics: multilevel models
What is qualitative analysis?

• The quantitative paradigm is dominant over the qualitative one in many disciplines (Fielding & Schreier, 2001)

• Research in a natural context, with a low degree of control over the context and the subject (Camic, Rhodes, & Yardley, 2003a)

• Using qualitative data ≠ qualitative analysis. Nominal data can be used in quantitative research. In qualitative research qualitative data is not transformed into a nominal measurement scale.
<table>
<thead>
<tr>
<th>Qualitative Paradigm</th>
<th>Quantitative Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>naturalistic</td>
<td>positivistic</td>
</tr>
<tr>
<td>Give a complete detailed description</td>
<td>Summarize and categorize observations</td>
</tr>
<tr>
<td>Interpretation of behavior</td>
<td>Prediction of behavior</td>
</tr>
<tr>
<td>Know only roughly what you are looking for</td>
<td>Make explicit and clear what you are looking for</td>
</tr>
</tbody>
</table>
Qual vs Quan (2)

<table>
<thead>
<tr>
<th>Qualitative Paradigm</th>
<th>Quantitative Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design emerges during study</td>
<td>Design is explicit and clear in advance</td>
</tr>
<tr>
<td>Ends with hypotheses & theory</td>
<td>Begins with hypotheses & theory</td>
</tr>
<tr>
<td>Time consuming</td>
<td>efficient</td>
</tr>
<tr>
<td>detailed</td>
<td>Less detailed (summarize details in categories or numbers)</td>
</tr>
</tbody>
</table>
Qual vs Quan (3)

<table>
<thead>
<tr>
<th>Qualitative Paradigm</th>
<th>Quantitative Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make abstractions, concepts and hypotheses from details</td>
<td>Form abstractions, concepts and hypothesis in advance and check if you can find them back in the data (Deductive)</td>
</tr>
<tr>
<td>(Inductive)</td>
<td></td>
</tr>
<tr>
<td>Part of to be observed data. Insider’s point of view (emic).</td>
<td>Objective observer. Outsiders point of view (etic)</td>
</tr>
</tbody>
</table>
Main drawbacks of qualitative analysis

• **Inductiveness**
 – Adjust hypotheses to data

• **Hypotheses**
 – How to structure the research if you don’t state explicit questions to start with?

• **Holistic observations**
 – How to generalize from a series of detailed descriptions?

• **Validity and reliability**
 – Can the results of a study are said to be valid and reliable if you do not have statistics to back the results up?
Why consider using a qualitative design?

• To include the context and setting in which human behavior takes place
 – **Context influences** human behavior and is an important part of the focus of study (McGrath & Johnson, 2003)
 – **Deal with contextual influences** instead of eliminating contextual variance or treating it as confounds
 – **Infrequent or irregular** phenomena can be as important as behavior that occurs more often.
What kind of data do you get with qualitative analysis?

- Descriptive
- Patterns/categories are described based on the descriptive data
- Data is not transformed to numerical data
Validity in qualitative research (1)

<table>
<thead>
<tr>
<th>Inference</th>
<th>Validity</th>
<th>Explanation (Cook & Campbell 1979)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>Statistical conclusion</td>
<td>Is the result a real result? (non-random, sufficient size, non-coincidental)</td>
</tr>
<tr>
<td>Causal</td>
<td>Internal validity</td>
<td>How certain are you that there is a causal relationship?</td>
</tr>
<tr>
<td>Construct</td>
<td>Construct validity</td>
<td>Are you measuring what you want to measure? How certain are you that an indicator is measuring a construct?</td>
</tr>
<tr>
<td>Generalization</td>
<td>External validity</td>
<td>How certain are you that a result can be generalized over people, time and setting?</td>
</tr>
</tbody>
</table>
Validity in qualitative research (2)

• Since qualitative research is descriptive and patterns are not recoded into numerical variables, statistical inferences can not be made.

• Internal, external and construct validity can be determined (Lund, 2005).
Q: What if you want statistical validity?

A: Combine qual with quan methods.

- multi-method approach (triangulation)
- One way to do this:
 1. qualitative research: observe, describe, find patterns and categories
 2. quantitative research: label categories with numbers, use statistics
Development of language use in toddlers

- the way toddlers use language in preschool
- in different situations and with different people
- the way this develops from age 2;6 to 4;0 years.
- Subjects are normally developing children

- Observations are made of 24 children in 3 preschools.
- Audio and video recordings are made every 3 months for approximately 1½ year.
Observation points

<table>
<thead>
<tr>
<th></th>
<th>april</th>
<th>july</th>
<th>oct</th>
<th>jan</th>
<th>april</th>
<th>july</th>
<th>oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>2;6</td>
<td>2;9</td>
<td>3;0</td>
<td>3;3</td>
<td>3;6</td>
<td>3;9</td>
<td>4;0</td>
<td></td>
</tr>
</tbody>
</table>
Data analysis

• qualitative: observe, describe, find patterns and categories

• quantitative: recode patterns to a nominal or ordinal scale (label categories with numbers), use statistics
General questions

• Development over time
• Inter subject variability: how do children differ from each other?
• Intra subject variability: How much variability is there within a child?
• Distinguish between progress and achievement. Compare growth curves.
Complications

• The qualitative approach leads to a detailed description of each individual child. Individual situations and behaviors of the subjects are emphasized. In other words, the study consists of multiple case-studies, instead of one group study.

• Children are in different preschools and have different teachers. This can influence their language use in the preschool. How do you account for these influences?
Multilevel analysis

• “Multilevel analysis is a general term referring to statistical methods appropriate for the analysis of data sets comprising several types of unit of analysis.” (Snijders, 2003)

• To account for the influence of school on the development of children, view the children as nested into schools.

• In my study: 24 toddlers belong to one of 3 preschools
 – Level 1 units: toddlers
 – Level 2 units: schools
Advantages multilevel models (MLM)

- emphasizes not only the individual but also the social context
- accounts for populations with a hierarchical, nested structure
- can be used with repeated measures, also in the case of missing data (Plewis, 1998)
- Allow covariates to be measured discrete or continuous at each level
- Allow outcomes to be discrete or continuous (Raudenbush, 1994)
Key terms of MLM

- **Hierarchy**: Organization from detailed to global levels
- **Level**: Part in hierarchy, consisting of a collection of units of one type. The most detailed level is level 1.
- **Unit**: Element belonging to a level
- **Nesting**: Collection of units belonging to a level
- **Error/residu**: Unexpected variance
- **Intercept**: true initial status
- **Slope**: growth rate
Nesting (1)

- Multilevel methods account for data that is nested in higher order data.
- **Nesting** means that a unit belongs to a category, which is a unit of another category higher in the **hierarchy**.
 - For example: a student belongs to a class, the class belongs to a school, the school belongs to an educational movement.
Nesting (2)

- Levels of analysis can be **nested** or **crossed** (Snijders, 2003).
- **Nested**: a lower level is nested in a higher level when the lower level is a **subset** of the higher level.
- **Crossed**: higher levels are overlapping. It is easier to analyze nested levels than crossed levels.
Hierarchical Linear Model (HLM)

- The main model of multilevel analysis
- Variant of regression analysis
- Designed for hierarchically structured data.
Features HLM

- Extension of General Linear Model (GLM)
- Errors (residuals) at every level
- Independent variables can be defined at any of the levels
- Can show interaction effects between levels.
 - express how context (macro level) affects relations between variables on the individual level (micro level).
 - For example, indicate how much college context (Z) influences the effect of individual achievement (X) on later income (Y) (Snijders, 2003).
Assumptions of HLM

• hierarchical data
• one dependent variable measured at lowest level
• independent variables measured at all existing levels
Example equation HLM (1)

• Question: How do annual incomes of university graduates 15 years after graduation depend on academic achievement in university?
 – Y = current income
 – X = average grade
 – i = graduate student
 – j = university

• Students are nested in universities

• (Example from (Snijders, 2003))
Example equation HLM (2)

Level 1 (Linear regression model):

\[Y_{ij} = a_j + b_j X_{ij} + E_{ij} \]

• In words:
 – \(Y_{ij} \): The current income of student \(i \) from university \(j \)
 – \(a_j \): initial status for someone in university \(j \) (intercept)
 – \(b_j \): growth rate for someone in university \(j \) (slope)
 – \(X_{ij} \): the average grade for student \(i \) from university \(j \)
 – \(E_{ij} \): individual random error
Example equation HLM (3)

Level 2 (crossed random effect model):

- a_j: initial status for someone in university j (intercept)

$$a_j = a + U_{0j}$$

- **In words:**
 - a_j: initial status for someone in university j
 - a: population mean initial status (all students together)
 - U_{0j}: university specific deviations from the population mean initial status
Example equation HLM (4)

Level 2 (crossed random effect model):
• b_j: growth rate for someone in university j (slope)

$$b_j = b + U_{1j}$$

• In words:
 – b_j: growth rate for someone in university j
 – b: population mean growth rate (all students together)
 – U_{1j}: university specific deviations from the population mean growth rate
Example equation HLM (5)

Level 2 (crossed random effect model):

- Fill in:

\[Y_{ij} = a_j + b_j X_{ij} + E_{ij} \]

\[Y_{ij} = a + U_{0j} + (b + U_{1j}) X_{ij} + E_{ij} \]

\[Y_{ij} = a + b X_{ij} + U_{0j} + U_{1j} X_{ij} + E_{ij} \]
Fixed & random parts

- \(Y_{ij} = a + bX_{ij} + U_{0j} + U_{1j}X_{ij} + E_{ij} \)
- \(a + bX_{ij} \)
 - fixed part
 - a linear function of independent variables, like in linear regression analysis
- \(U_{0j} + U_{1j}X_{ij} + E_{ij} \)
 - Random part
 - Reflects unexpected variation between graduates (\(E_{ij} \))
 - Reflects unexpected variation between universities (\(U_{0j} \) and \(U_{1j}X_{ij} \))
Residuals (errors)

- \(Y_{ij} = a + bX_{ij} + U_{0j} + U_{1j}X_{ij} + E_{ij} \)
- \(E_{ij} \)
 - Level 1
 - Varies over the population of students
- \(U_{0j} \) and \(U_{1j} \)
 - Level 2
 - Vary over the population of universities
Example picture (Plewis, 1998)
Repeated measures (1)

• By nesting the children in the schools, you account for the effect of school on the child’s performance
• Longitudinal study:
 – For every child there are repeated measures.
 – Data points in a child are dependent.
 – Data points can be seen as nested in the children

Level 1: repeated measures
Level 2: children
Level 3: preschools
Repeated measures (2)

Advantage:

– not necessary for every child to have the same amount of data points. In other words missing data is no problem.
Repeated measures (3)

Dependence on time:
• Longitudinal data has a meaningful numerical time variable (e.g. age).
• Crucial relationship between dependent variable and time variable
• However, often the dependence on time is nonlinear.
 – use nonlinear transformation
 – use nonlinear models.
nonlinear versions of HLM

• If:
 – you can not assume that relations are linear
 – you can not assume that residuals are normally distributed
 – variables are dichotomous
 – Variables are discrete (fixed set of values, no values in between)
 – <30 units per level

Eg Bayesian hierarchical model
Web info

Qualitative research
- Forum Qualitative Sozialforschung/Forum: Qualitative Social Research http://www.qualitative-research.net/fqs/fqs-eng.htm

Multilevel models
- http://multilevel.ioe.ac.uk/publref/newsletters.html
- Prof Snijders, RuG http://stat.gamma.rug.nl/snijders/
- Prof Hox, UU http://www.fss.uu.nl/ms/jh/index.htm