Seminar in Methodology and Statistics

Fisher's Exact Test

Livi Ruffle \& Maria Trofimova
$21^{\text {st }}$ March 2005

Outline

- Theory
- Why use Fisher's Exact Test?
- Justification of the formula
- Practice
- Broca's (1 group, 2 questions)
- Broca's and Wenicke's (2 groups, 1 question)

Why use Fisher's Exact Test?

- Chi-squared test is suitable only when all the cell frequencies are above a lower bound.
- Exact vs. approximate probability distributions.

The derivation

> | Variable X | |
| :---: | :---: |
| No | Yes |
| a | \mathbf{b} |
| c | \mathbf{d} |

No

The derivation

$\begin{aligned} & \searrow \\ & \frac{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \gg \end{aligned}$		Variable X		
		No	Yes	
	Yes	a	b	a+b
	No	c	d	c+d
		a+c	b+d	N

The derivation

If we knew only these marginal totals and the overall size of the sample involved, what would the probability be of achieving our result by chance?

The derivation

$\mathrm{P}=\frac{\text { (number of favorable outcomes) }}{\text { (number of suitable outcomes) }}$

The derivation

		Variable X		
		No	Yes	
$\begin{aligned} & \rangle \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{0}{\pi} \\ & > \end{aligned}$	Yes	a	b	$a+b$
	No	C	d	c+d
		$a+c$	$b+d$	N

Number of cases where the marginal totals match for X : $\binom{N}{a+c}$ This value is the number of suitable outcomes.

The derivation

So now we have:

How do we calculate the numerator?

The derivation

The derivation

The derivation

The derivation

So out of all the cases where the marginal totals solve for X , the ones we want are where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} correlate with Y .

Thus:

$$
\mathrm{P}=\frac{\binom{a+c}{a}\binom{b+d}{d}}{\binom{N}{a+b}}
$$

The derivation

This value

$$
\mathrm{P}=\frac{\binom{a+c}{a}\binom{b+d}{d}}{\binom{N}{a+b}}
$$

is equevalent to that given in Agressi, given a 2×2 table

The derivation

It's also equivalent to:

$$
P(\text { outcome })=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!a!b!c!d!}
$$

(try it if you don't believe me)

- Example 1
- Prepositional case-assignment by Broca's patients
- Example 2
- Case-assignment by Broca's and Wernicke's patients

Case

- A syntactic notion that relates to a dependency between the constituents in a sentence
- Is assigned to a noun phrase by case-assigners (verbs, prepositions)

Case-assignment

Acc.case \square
Hij .nom. geeft een ball aan hem .acc. *Hij .nom. geeft een ball aan hij .nom.

Acc.case
Hij .nom. zie haar .acc.
*Hij .nom. zie zij .nom.

Example 1

Prepositional case-assignment in the free speech of Broca' s patients

- $\mathrm{N}=19$
- Production of case-assigner (X) :

$$
9 \text { - YES, } 10 \text { - NO }
$$

- Correct case-marking (Y):

$$
9-\text { YES, } 10 \text { - NO }
$$

Contingency table

X

Contingency table

Contingency table

The logic of Fisher's Test

Но:
There is no association between X (correct case-marking) and Y (production of case-assigner)

The question of statistical significance:

If the Ho were true how likely is it that we may end up with the result this large or larger?

The logic of Fisher's Test

The logic of Fisher's Test

Ô1 Ô2
Ô3
Ô4
Ô5
Ô6 Ô7
Ô8
Ô9 Ô10

9	0	8	1	7	2	6	3	5	4	4	5	3	6	2	7	1	8	0	9

$\begin{array}{llllllllllllllllllll}1 & 9 & 2 & 8 & 3 & 7 & 4 & 6 & 5 & 5 & 6 & 4 & 7 & 3 & 8 & 2 & 9 & 1 & 10 & 0\end{array}$
"this large or larger"

Relative frequency
(Probability)

The logic of Fisher's Test

1. Figure out the exact probability of each possible outcome "this large or larger"
2. Add up the probabilities
3. Get the result!

Probability of an outcome

$\mathrm{P}($ outcome $)=$

$$
\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{N!a!b!c!d!}
$$

Probability of an outcome

$P(o ̂ 10)=\frac{9!10!10!9!}{0.000010825}$ 19! 0! 9! 10! 0!

NB! x! - "x factorial
$0!=1$
$1!=1$
$2!=2 \times 1=2$
$3!=3 \times 2 \times 1=6$
$4!=4 \times 3 \times 2 \times 1=24$
$5!=5 \times 4 \times 3 \times 2 \times 1=120$
etc.

Probability of an outcome

$$
P(\hat{o} 9)=\frac{9!10!10!9!}{19!1!8!9!1!}=0.000974258
$$

$$
P(\hat{o} 8)=\frac{9!10!10!9!}{19!2!7!8!2!}=0.017536642
$$

Probability of an outcome

The probability of getting the result "this large or larger"

$$
\mathrm{P}=\mathrm{P}(\hat{\mathrm{O}} 10)+\mathrm{P}(\hat{O} 9)+\mathrm{P}(\hat{\mathrm{O}} 8)
$$

$\mathrm{P}=0.000010825+0.000974258+0.017536642=\mathbf{0 . 0 1 8 5}$

What do we get?

- $\mathrm{P}=0.0185$ is statistically significant
- Ho can be rejected
- X and Y tend to be associated for this particular type of Subjects

Conclusion

The production of correct case-assigner is associated with the realization of correct case-marking in the free speech of Broca's aphasic patients

Example 2

Syntactic prepositions by Broca's and Wernicke's patients

- Groups (Y)
- Broca's aphasia - syntactic disorder, $\mathrm{N}_{\text {broca's }}=5$
- Wernicke's aphasia - lexical disorder, Nwernickes $=5$
- $\sum=10$
- Production of syntactic preposition (X) :
- 6 - YES, 4 - NO

Contingency table

 XProduction of syntactic preposition

		preposition		
		NO	YES	
Y Groups	Wernicke's	0	5	5
	Broca's	4	1	5
		4	6	$\mathbf{1 0}$

Но:

There is no association between a type of impairment (Broca's vs. Wernicke's) and production of syntactic prepositions

The question of statistical significance:
If the Ho were true how likely is it that we may end up with the result this large or larger?

Contingency table

 XProduction of syntactic preposition

		preposition		
	NO	YES		
Y Y Groups	Wernicke's			5
	Broca's			5
		4	6	$\mathbf{1 0}$

The logic of Fisher's Test

| Ô1 | $\hat{\text { On2 }}$ | $\hat{\text { Ô3 }}$ | Ô4 | Ô5 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 3 | 2 | 2 | 3 | 1 | 4 | 0 | 5 |
| 0 | 5 | 1 | 4 | 2 | 3 | 3 | 2 | 4 | 1 |

"this large"

Probability of an outcome

$$
\mathrm{P}(\text { outcome })=\frac{(\mathrm{a}+\mathrm{b})!(\mathrm{c}+\mathrm{d})!(\mathrm{a}+\mathrm{c})!(\mathrm{b}+\mathrm{d})!}{\mathrm{N}!\mathrm{a}!\mathrm{b}!\mathrm{c}!\mathrm{d}!}
$$

$$
\mathbf{P}(\hat{\mathbf{o}} \mathbf{5})=\frac{5!5!4!6!}{10!0!5!4!1!}=\frac{120 * 120 * 27 * 720}{3628800 * 1 * 120 * 24 * 1}=\mathbf{0 . 0 2 3 8}
$$

Results

- $\mathrm{P}=0.0238$ is statistically significant
- Ho can be rejected
- There is certain association between a type of impairment and a type of linguistic difficulties

Conclusion

Broca's patients as opposed to Wernicke's have more problems with syntactic prepositions

'Numbers’ by Jasper Johns

