Linguistic Structure in Aggregate Variation

John Nerbonne Rijksuniversiteit Groningen

Summer, 2005

Aggregation in Variation

Thesis: Language variation must be studied in the aggregate.

- Detailed studies of single features ([ai] vs. [a], [æ] vs. [æ[∂]]) are at best inconclusive, at worst misleading.
- Bloomfield (1933) noted how confusing details are; Coseriu (¹1956,1975) warned against "atomism" in dialectology.
- But question: is the aggregate linguistically structured?

We focus here on the question of linguistic structure.

Outline

- Question
- Aggregating Technique
- Experiment on Southern Vowels in LAMSAS
- Results
- Reflections

Question

Aggregate pronunciation distance:

- Is reliable, given > 20 pronunciations/site (Cronbach $\alpha > 0.8$)
- Correlates with naive speakers' judgements ($r \approx 0.65$) Gooskens & Heeringa (2003), Heeringa (2004: Chap. 7)
- Is predictable from geography (Heeringa & Nerbonne, 2001)
- Provides analytic foundation for dialect continua as organizing principle

But there's little assumption of linguistic structure in this work.

Question: What linguistic elements determine aggregate pronunciation distance (if any)?

Factor Analysis

- Extract from correlation matrix those elements which reliably correlate
- Used in social science research to find common (underlying), e.g., in questionnaires
 - Check reactions to local dialect vs. standard
 - Status factor: intelligence, education, knowledgeable
 - Sympathy factor: honest, sympathetic, unpretentious
- Leading idea: examine correlations among linguistic variables, extract commonalities

Material

- Separate LAMSAS material into roughly 200 vowel pronunciations
 - first vowel in <Alabama>, last vowel in <good_morning>
- For each vowel, for each pair of sites, measure distance in vowel pronunciation
 - use LAMSAS feature chart as basis for distance
- Given that factor analysis will identify vowel occurences that function similarly (in distinguishing sites), the linguistic hypothesis is that these will reflect linguistic structure (phonemic identities, phonological processes).

Sites Grouped to Complete Matrices

Site Matrices

Per vowel we obtain a distance matrix (site \times site):

	Wheeling	Winston	Raleigh	Richmond	Charlotte
Wheeling	0	41	44	45	46
Winston	41	0	16	34	36
Raleigh	44	16	0	37	38
Richmond	45	34	37	0	20
Charlotte	46	36	38	20	0

We then derive for each pair of vowels, the correlation coefficient, i.e., the degree to which they indicate the same distance between sites.

Vowel Matrix

Per vowel-pair we obtain correlation coefficient (vowel \times vowel) correlations:

	morning1	Tuesday2	pallet2	thunderstorm2	first1
morning1	1	0.02	-0.01	0.73	0.056
Tuesday2		1	0.23	-0.03	0.02
pallet2			1	0.006	0.09
thunderstorm2				1	0.043
first1					1

This CORRELATION MATRIX is analysed for COMMON FACTORS.

We used varimax as an estimation procedure (in R): only orthogonal, no oblique rotations.

Condition: KCM/Bartlett's test of sphericity (variables are sufficiently distinct): p < 0.001

Loadings

Factor Analysis

Importance of Factors

Factor Analysis

Extreme Factor Loadings

Factor 3

Factor 2

Factor 1 Loadings

closet2	0.884	kitchen	2	0.880	
pallet2	0.874	white_a	white_ashes3		
Tennessee2 0.856		Cincinnati2		0.851	
Baltimore2	0.844	Massac	chusetts4	0.830	
Chicago1	0.816	draining	g2	0.812	
[ə] vs. [ɨ]					
Florida1	0.842 [o] vs. [a]	StLouis2	2 0.821	[u] vs. [ʉ]
hog_pen1	0.585 [o] vs. [a]	Tuesday1	0.796	[u] vs. [ʉ]
			Missouri2	0.857	[ʉ ^ə] vs. [ʉ ^ə]

Factor 1: Geography

Phonological Alternations Factor 1

[ə] vs [ɨ] [ɔ] vs [ɑ] [u] vs. [ʉ]

Conclusion

• The first factor is sensitive to phonological alternations along the North-South division

Factor 2 Loadings

weatherboarding20.936Saturday20.926Virginia10.905

[Vr] vs. V] (including [&] vs. [ə])

 good_morning2
 0.929
 New_York2
 0.922

 forty1
 0.906
 thunderstorm3
 0.893

[ɔə] vs. [ɔ- ə]

Factor 2: Geography

Phonological Alternations Factor 2

[ð] vs. [ə] [ɔə] vs. [ɔ- ə]

- The second factor is sensitive to alternations distinguishing the Piedmont area, especially the absence of syllable final [r].
- Does [r]-lessness promote the lowering of [ɔ]?

Factor 3 Loadings

Wednesday2		0.967		Saturday3	0.961
thirty2		0.928		foggy2	0.854
[ɨ^] vs. [ɨ]					
Georgia2	0.8	76	Tei	nnessee1	0.766
sofa2 0.7		'60	good_day1		0.775
Russia2 0.7		'51	good_morning1		0.738
[ə] vs. [ɨ] (!)					
[ɛ] vs. [ɛ^]					
[U] VS. [U⊦]					

Factor 3: Geography

Phonological Alternations Factor 3

 $[\dot{i}_{\uparrow}] VS. [\dot{i}]$ [ϵ] VS. [ϵ_{\uparrow}] [U] VS. [U₊]

 Only the [i[^]] vs. [i] distinction seems to pick out West Virginia as opposed to Virginia, North Carolina, Maryland, and Delaware.

Noncontrasting Vowels (in Factor Analysis)

he_died_with1 he_died_with3 New England2 Sunday week3 half_past_seven1 what time is it1 New Orleans2 half_past_seven2 Sunday before last5 steady drizzle1 twenty-seven1 twenty-seven2 twenty-seven3 white ashes2

April2 France1 Missouri3 attic2 backlog1 chimney1 fourteen2 eleven2 my wife2 quilt1 seventy1 three1 thirteen2

seven2 twelve1 bureau1 ten1 bottom2 driven1 broom1 mantel1 night1 rose1 sofa1 pallet1 twenty1

kitchen1 January2 St. Louis1 second2 froze over1 dry spell1 froze over2 hog pen2 northeast2 second1 tomorrow1 January1 wardrobe2

Chicago3 Louisiana3 February1 all at once1 Alabama2 dry spell2 Tennessee3 Charleston2 northwest2 a_little_ways2 Washington3 Baltimore1 bureau2

Tentative Conclusions

- Linguistic structure is exploited in dialectal distinctions. For example, phonemic distinctions are consistent across lexical items.
- Factor analysis effectively identifies linguistic structure in mass comparision
- The technique is enabled by the numeric measure of distance between segments.
- Total explained variance is low, only 36% in the first three factors. Data is noisy.
- Some factors link non-trivial linguistic variations, e.g., [ə] vs.
 [ɨ] on the one hand with [ε] vs. [ε[^]] on the other

Future Work

- Identifying which variations to focus on (e.g., [ə] vs. [ɨ]) wrt a given factor is subjective. Can we systematize this?
- Can this technique suggest deeper linguistic relationships, e.g., different concrete alternations that are loaded for the same factor?
- Are there more general, e.g., data-mining techniques, that could be used to probe in data for which no numerical measure of difference has been established?