Correlation and Regression

Idea: weight increases as height increase or recognition time decreases as word frequency increases

- descriptive statistics
- two or more numerical variables, e.g. height \& weight, etc.
- correlation: symmetric
- regression: asymmetric
- may be interpreted inferentially
- usually vs. H_{0} "no relation"
* correlation H_{0} : $r=0$
* regresson H_{0} : $\quad m=0$ where m is slope of least-squares regression line

$\mathrm{R} u \mathrm{G}$

Correlation and Regression

- appropriate
- two (or more) numerical measures on the same individuals
- like paired t-test
unlike χ^{2}, z-test, unpaired t-test
- especially useful with two (or more) independent variables
- example: incidence of heart attack (dependent)
* amount of smoking (dependent +)
* degree of overweight (dependent +)
* frequency of physical exercise (dependent -)
* ...

Reminder-Correlation

r - product of standardized values

$$
\begin{align*}
r_{x, y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \tag{1}\\
& =\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}} \tag{2}
\end{align*}
$$

0 no correlation
1 perfect positive correlation
-1 perfect negative correlation

Reminder-Correlation

- r ranges: $-1<r<1$
- r "pure number" - no units
- insensitive to scale, percentages, ... correlation w. temperature can ignore scale
- symmetric $r_{x, y}=r_{y, x}$
- no necessary dependence
- shoe size and reading ability correlate in kids
-both dependent on age
- r measures "clustering" relative to σ_{y} / σ_{x} as $r \rightarrow 1$ (or -1), dots cluster near line
- r sensitive to influential datapoints extreme x values

Example

A course in time management skills claims to completely change employees. You are sceptical, suspect that many skills are related to personality, experience, and custom. You obtain test scores given before and after the course to 25 employees. The test itself is regarded as reliable. Data:

5.8	6.0	5.9	6.1	5.7	6.0	5.9	6.1	5.7	5.9
5.2	5.1	5.6	5.9	5.9	5.9	5.8	6.0	6.1	6.3
5.9	6.3	6.9	7.0	6.3	6.4	5.9	6.0	5.1	6.2
5.7	6.1	6.0	6.2	5.1	5.0	6.1	5.9	6.4	6.0
6.2	6.1	5.8	6.0	5.6	6.4	6.8	7.1	6.3	6.9

$m_{<}=5.9, \quad m_{>}=6.1 s_{<}=s_{>}=0.45$
t-test possible, shows no sig. difference at $p=0.01$
suspicion $\left(H^{\prime}\right)$: pre-course skills (most) important determinant of post-course skills how to translate this into statistic?

R u G

Scores Correlate?

If pre-course results determine post-course results, they should correlate, i.e. $r \neq 0$

result before training
looks like positive tendency, calculate r

Scores Correlate?

$H_{0}: \quad r=0$ (no correlation in pre-, post-course skills)
$H_{a}: \quad r \neq 0$ (correlation in pre-, post-course skills)
calculate r

	AFTER	BEFORE
AFTER	1.00	. 77
	(25)	(25)
	$\mathrm{P}=$.	$\mathrm{P}=.000$
BEFORE	. 77	1.00
	(25)	(25)
	$\mathrm{P}=.000$	$\mathrm{P}=$.

result: certain correlation, reject H_{0}
no confidence interval calculated (complex)
RuG

Scores Correlate?

$r=0.77, \quad p<0.001$-but take care: correlation sensitive to influential data—look!

No apparent extremes, but recall connection correlation \& regression.

Regression Analysis

We use regression to predict one numerical variable using another. Regression produces values b_{0}, b_{1} in equation:

$$
\hat{y}=b_{0}+b_{1} \times x
$$

$H_{0}: \quad b_{1}=0$ (no correlation in pre-, post-course skills)
$H_{a}: \quad b_{1} \neq 0$ (correlation is real)
Regression, too, tests hypothesis whether pre-course scores influence post-course scores. Can we predict post-course scores using pre-course scores?
$\mathrm{R} u \mathrm{G}$

Regression Analysis

Invoke linear regression to obtain
--- Variables in the Equation ---
Variable

BEFORE		
(Constant)	B	\ldots
	1.35	\ldots
	\hat{y}	$=1.35+0.81 \times x$

But alone, this shows nothing about H_{0} !
Recall correlation-regression connection: $b_{1}=r \frac{s y}{s_{x}}$
Thus, tests closely related: $r=0 \rightarrow r \frac{s y}{s x}=0$

Regression Analysis

Two kinds of confidence intervals

- range of individual values $\left(s_{y}\right)$
- range of expected means $\left(\mathrm{SE}_{y}\right)$
- Given x, where will 95% of corresponding y values be?
- Given x, where will 95% of corresponding samples means be?

Confidence Interval for Individuals

Invoke regression, confidence interval for individuals

result before training

Given x, where will 95% of corresponding y values be?

Confidence Interval for Means

invoke regression, confidence interval for means

Rsq $=0.5879$
result before training

Given x, where will 95% of corresponding y means be?

$\mathrm{R} u \mathrm{G}$

Confidence Interval for Means

—needed for hypothesis that $\beta_{1} \neq 0$
two inferential steps possible

- derive confidence interval for β_{1}
- test H_{a} : $\beta_{1} \neq 0$

Variable	B	\ldots	95% Confdnce Intrvl B	
BEFORE	.81	\ldots	.52	1.1
(Constant)	1.35	\ldots	-.37	3.1

Given this sample, there is less than 2.5% chance that $\beta_{1}<0.52$. Pre-course scores are significant!

Alternative Test whether $H_{a}: \quad \beta_{1} \neq 0$

```
Eq. Nr. 1 Dependent Variable.. AFTER after training
Block Number 1. Method: Enter BEFORE
Variable(s) Entered on Step Number
    1.. BEFORE result before training
--- Variables in the Equation ---
Variable B SE B 95% Confdnce Intrvl ...
BEFORE .81 . 14 . 52 1.1
(Constant) 1.35 ... ... ...
----------- in ------------
BEFORE 5.728 .0000
(Constant) 1.620 .1188
```

$\mathrm{R} u \mathrm{G}$

Methode behind Alternative Test

Inf. Stats

$$
t=\frac{b_{1}}{s_{b_{1}}}=\frac{0.81}{0.14}=5.7
$$

Roughly, how many sd's is b_{1} from 0 ?
$24(=n-1)$ degrees of freedom
$P(t(24)>3.75)=0.0005$ from table (hidden in SPSS)

Examine Residuals!

Recall: regression sensitive to extreme x values, expects roughly normal distribution(s)

Check via residuals, invoke via SPSS regression analysis

Residuals!

Still looks OK
Alternative view: normal quantile plots

Iternative View of Residuals: Normal Quantile Plots

Normal distribution shows up clustered around straight line-this is fine.
RuG

Correlation/Regression

- Test for relation between two numeric variables
- correlation: symmetric
- regression: asymmetric x influences y
- Test contrasts vs. H_{0} "no relation"
- correlation $H_{0}: \quad r=0$
- regresson H_{0} : $\beta_{1}=0$
where β_{1} is slope of least-squares regression line
- Assume normally distributed variables
- Extensions to multiple regression possible, very powerful

