Table of contents

Using linear mixed-effects models

in psycholinguistic research

Shravan Vasishth, vasishth@acm.org

Universität Potsdam

28th March 2006, Groningen

This work in its present form is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs信
send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

The main goals today

- This is a non-technical and intuitive introduction to the use of linear mixed-effects models in psycholinguistic research.
- The focus is on hypothesis testing, not prediction.
- I will provide a real-life example from my own research to show how mixed-effects models can help us to build better and more informative statistical models.
- Towards the end I will also give some examples of how the R code relates to the content discussed in this document.

These slides can be downloaded from:
http://www.ling.uni-potsdam.de/~vasishth/SFLS.html

$$
\begin{aligned}
& \text { Introduction } \\
& \text { The problem } \\
& \text { Experiment design } \\
& \text { The data analysis problem } \\
& \text { Fixed and random effects in the model } \\
& \text { NP2 } \\
& \text { Model } 1 \\
& \text { Model } 1 \text { estimates } \\
& \text { Model } 1 \text { estimates } \\
& \text { Model } 1 \text { analysis of variance } \\
& \text { Model } 2 \text { ele } 2 \text { coefficients } \\
& \text { Mods } \\
& \text { Model } 1 \text { versus } 2 \text { random effects } \\
& \text { Model } 2 \text { ANOVA } \\
& \text { Comparing Models } 1 \text { and } 2 \\
& \text { NP3 } \\
& \text { Model } 1 \\
& \text { Model } 1 \text { ANOVA } \\
& \text { Model } 2 \\
& \text { Model } 2 \text { ANOVA } \\
& \text { Comparing Models } 1 \text { and } 2 \\
& \text { V1 } \\
& \text { Model } 1 \\
& \text { Model } 1 \text { ANOVA } \\
& \text { Model } 2 \\
& \text { Model } 2 \text { ANOVA } \\
& \text { Model } 1 \text { versus } 2 \\
& \text { Summary } \\
& \text { Dataset example } \\
& \text { NP2 models } \\
& \text { Region preceding NP3 }
\end{aligned}
$$

The broad research question

- A current focus in sentence processing research is the issue of locality and anti-locality during online reading.
- The key claim in the literature is that argument-head distance is a (or perhaps the) major determinant of processing difficulty. This is the foundational idea behind several theories (such as Gibson's and Hawkins').
- But there are two issues:
- There is significant evidence against locality (Konieczny 2000), (Vasishth 2003), (Vasishth \& Lewis 2006), (Vasishth \& Scheepers, in preparation))
- Current theories have no room for interference effects, except as an afterthought. The alternative we are exploring is that locality, anti-locality, and interference emerge from more general constraints on the human cognitive system.
- We'll explore one aspect of this issue today with some recent results (see Suckow et al. 2005, 2006).

The interference effect is a well-researched phenomenon in sentence processing. Gordon and colleagues, Van Dyke and Lewis, and others has shown that retrieving an element like an NP at a verb is harder when similar elements are available in working memory. Consider the following sentence:
(1) Der Anwalt, den der Zeuge/Säbel, den der Spion The lawyer who the witness/sword that the spy betrachtete, schnitt, überzeugte den Richter looked-at cut convinced the judge
Interference predicts greater processing difficulty at the verb betrachtete when all three preceding NPs are human.

Experiment design and method

- There are two factors of interest: Similarity and Grammaticality.
- A 2×2 within-subjects ($\mathrm{n}=51$) experiment was conducted, with 3 items per condition. Four counterbalanced lists were prepared and the 12 critical items in each list were interspersed with approximately 50 distractor sentences and the lists were pseudo-randomized. Subjects were randomly assigned to lists.
- The dependent measure of interest was total reading time at NP2, NP3, the first verb (V3), and the last (V1). Call these the critical regions.

```
[NP1+ [NP2+ [NP3+ VP3] (VP2)] VP1]
[NP1+ [NP2- [NP3+ VP3] (VP2)] VP1]
```

Previous research by Gibson and Thomas (1999) has shown for English that omitting the second verb in center embeddings results in improved grammaticality judgements.
However, only offline judgements or auto-paced reading have been brought to bear in the empirical issues. In (Suckow et al. 2006) we tried to replicate this missing VP effect using eyetracking.
(2) Der Anwalt, den der Zeuge/Säbel, den der Spion The lawyer who the witness/sword that the spy betrachtete, (schnitt,) überzeugte den Richter looked-at cut convinced the judge

Hypothesis 1: Interference

Suckow, Vasishth, Lewis, and Smith (2006) hypothesized that interference could have a much more extensive effect.

```
[NP1+ [NP2+ [NP3+ VP3] VP2] VP1]
[NP1+ [NP2- [NP3+ VP3] VP2] VP1]
```

(a) Encoding interference: Encoding an NP should be more difficult when a similar NP has recently been encoded, NP2 and NP3 should be harder to process when NP2 is human (after factoring out frequency and length differences)
(b) Retrieval interference: Interference predicts greater processing difficulty at V3 if all NPs previously seen are animate, since the verb is looking for a human argument and there are three candidates.

Hypothesis 2: The missing VP effect

- If VP2 is forgotten, then no disription (no increase in reading time) should occur at VP1 in the missing VP conditions (c, d) compared to the grammatical conditions.
- If VP2 is not forgotten, a disruption is expected at or just after the VP1 in the missing VP conditions (c, d).
a. [NP1+ [NP2+ [NP3+ VP3] VP2] VP1]
b. [NP1+ [NP2- [NP3+ VP3] VP2] VP1]
c. [NP1+ [NP2+ [NP3+ VP3] -] VP1]
d. [NP1+ [NP2- [NP3+ VP3] -] VP1]

Experiment results

In this talk the analysis results are almost beside the point, but I'll tell you anyway:

- Evidence for encoding and retrieval interference was found
- Surprisingly, German native speakers immediately detect the missing VP. This expresses itself as longer RTs at the final verb in the missing-VP conditions. This result goes against the simple "memory overload" explanation of Gibson and Thomas (1999), whereby the prediction for the second verb is forgotten-Germans don't forget.
- Interesting side note: in parallel English reading studies conducted at Ann Arbor, Michigan, we found that English speakers do seem to forget the middle verb's prediction. See Suckow et al. (CUNY 2006 poster) for details.

Critical regions

The data analysis problem

In this talk I will focus only on (a) the Similarity effect at NP2 and the region preceding NP3, and (b) the Grammaticality effect at V 1 . There are two complications in the data analysis:

- Frequency and length of NP2 differ in the manipulation: higher frequency NPs and shorter NPs will be processed faster and this could confound the results.
- Eyetracking data are sometimes unbalanced: sometimes subjects do not look at particular words or not look long enough, so we will probably not have exactly identical numbers of repeated measures for each subject.
Our basic statistical model (without interactions) will look something like this:

$$
\begin{equation*}
R T=\text { baseline } R T+\text { Sim }+ \text { Gram }+ \text { Freq }+ \text { Len }+ \text { residual } \tag{1}
\end{equation*}
$$

Fixed and random effects in the model

- In general, effects can be "fixed" or "random"
- An example of a random effect is subjects: we are taking a random sample (well, in theory anyway) from a population.
- The factor(s) being manipulated (e.g. similarity) is a fixed factor, since we fixed it at $+/$ - similar when we designed the experiment.
- However, fixed factors like similarity can also be treated as random factors. I will just explain what this amounts to.

A mixed-effects model is one that has both fixed and random effects.

Similarity-word frequency interaction at NP2

Dissimilar NPs are more frequent in all but two cases.

Subject-similarity interaction at NP2

Most-but not all-subjects show a faster RT in the dissimilar condition.

Similarity-word length interaction at NP2

Dissimilar NPs happen to be sometimes shorter.

Log frequency-RT interaction at NP2

Log frequency
Unsurprisingly, high-frequency words have faster RT.

Starting small

The interaction plots confirm the importance of taking frequency and length of NP2 as explanatory covariates. Let's start by fitting a simple model:
Fixed factors:

- Similarity
- Word length
- Word frequency

Random factor:

- Subjects

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\epsilon_{i j} \tag{2}
\end{equation*}
$$

b_{i} is a separate coefficient (intercept) for each subject.

Length-RT interaction at NP2

Longer words have slower RT (also no surprise).

Model 1 estimates

Fixed effects coefficients (extracted from R output):

(Intercept)	Sim	Len	Freq
6.09	-0.16	0.07	-0.03

Random effects (standard deviations):
Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 0.6405620 .572838

$$
\begin{gather*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \text { Freq }_{i}+\epsilon_{i j} \tag{3}\\
y_{i j}=6.09+b_{i}+(-0.16) \times \operatorname{Sim}_{i j}+0.07 \times \operatorname{Len}_{i}+(-0.03) \times \text { Freq }_{i}+\epsilon_{i j} \tag{4}
\end{gather*}
$$

Model 1 estimates

R> intervals(fm0.NP2)
Approximate 95% confidence intervals
Fixed effects:
$\begin{array}{lrrr}\text { lower } & \text { est. } & \text { upper } \\ \text { (Intercept) } & 5.67040041 & 6.08701853 & 6.503636645\end{array}$
$\begin{array}{lrrr}\text { (Intercept) } & 5.67040041 & 6.08701853 & 6.503636645 \\ \text { similaritydissim } & -0.26841554 & -0.15744779 & -0.046483036\end{array}$
$\begin{array}{lrrrr}\text { len } & 0.04807326 & 0.07251362 & 0.096953981 \\ \text { lf } & -0.07036548 & -0.03263034 & 0.005104804\end{array}$
attr(,"label")
[1] "Fixed effects:
Random Effects:
Level: subject
(Intercept)) $\begin{aligned} & \text { lower est. } \\ & 0.5186496\end{aligned} \quad$ upper
Within-group standard error:
$\begin{array}{ccc}\text { lower } & \text { est. } & \text { upper } \\ 0.5382067 & 0.5728380 & 0.6096978\end{array}$

Model 1 analysis of variance
A more complex model

Fixed factors:

- Similarity
- Word length
- Word frequency

Random factors:

- Subjects
- Similarity is nested as a random factor inside Subject (separate term for each subject's exposure to similar and dissimilar conditions)

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\underline{b_{i j}}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\epsilon_{i j} \tag{5}
\end{equation*}
$$

Model 2 coefficients

The key change is in the random effects:

```
Random effects:
Formula: ~1 I subject
StdDev:}\begin{array}{r}{\mathrm{ (Intercept)}}\\{0.640562}
Formula: ~1 | similarity %in% subject
StdDev: (Intercept) Residual
```

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\underline{b_{i j}}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\epsilon_{i j} \tag{6}
\end{equation*}
$$

R> ranef (fm1.NP2) [2]\#this is the nested random effect: $\mathrm{b}_{-} \mathrm{ij}$
29/sim $\begin{array}{r}\text { (Intercept) } \\ -4.131275-09\end{array}$
$\begin{array}{ll}29 / \text { sim } & -4.131275 \mathrm{e}-09 \\ 29 / \mathrm{dissim} & -1.938749-09\end{array}$
$\begin{array}{lr}\text { 29/dissim } & \begin{array}{r}-1.938749 e-09 \\ 30 / s i m\end{array} \\ 9.077410 \mathrm{e}-10\end{array}$
$\begin{array}{lr}\text { 30/dim } \\ 30 / \text { dissim } & \begin{array}{l}9.077410 \mathrm{e}-10 \\ -3.705271 \mathrm{e}-09\end{array}\end{array}$

Model 2 ANOVA

	numDF	denDF	F-value	p-value
similarity	1	50	55.52	$1.183873 \mathrm{e}-09$
If	1	444	45.41	$4.985123 \mathrm{e}-11$
len	1	444	33.98	$1.071035 \mathrm{e}-08$

Table: NP2: similarity effect, logTRT, by subjects

Model 1 vs. 2 random effects
Model 1:

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \text { Freq }_{i}+\epsilon_{i j} \tag{7}
\end{equation*}
$$

Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 0.6405620 .572838
Model 2:

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\underline{b_{i j}}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \text { Freq }_{i}+\epsilon_{i j} \tag{8}
\end{equation*}
$$

Random effects:

Formula: ~1 | subject
(Intercept)
StdDev:
0.640562

Formula: ~1 | similarity \%in\% subject
(Intercept) Residual
StdDev: 5.526901e-05 0.572838

Comparing Models 1 and 2

Which model is better? There are various ways to quantify this; the Akaike Information Criterion is one (it's based on log-likelihood and the number of parameters in the model). The lower the AIC the better the fit.

Model	df	AIC	p -value
1	6	1108.965	
2	7	1110.965	0.9996

There is not much motivation for fitting the nested random effect for similarity.

The region preceding the NP3
(3) Der Anwalt, den der Zeuge/Säbel, den der Spion The lawyer who the witness/sword that the spy betrachtete, schnitt, überzeugte den Richter looked-at cut convinced the judge
Total reading time at the region preceding NP3 also includes parafoveal processing of NP3. We assumed that several factors would affect RT at der:

- Similarity, frequency, length of NP2 (as before)
- Spillover from the preceding region (den)

Model 1: Spillover as fixed effect

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\beta_{4} \text { Spillover }_{i}+\epsilon_{i j} \tag{9}
\end{equation*}
$$

The motivation for spillover correction at den

Subjects show varying patterns of spillover from region $n-1$; there appears to be a subject-spillover interaction.

Model 1 ANOVA

	numDF	denDF	F-value	p -value
(Intercept)	1	394	9096.16	$0.000000 \mathrm{e}+00$
similarity	1	394	7.24	$7.422626 \mathrm{e}-03$
If	1	394	5.01	$2.574450 \mathrm{e}-02$
len	1	394	2.47	$1.171585 \mathrm{e}-01$
logTRTn	1	394	18.91	$1.748319 \mathrm{e}-05$

Model 2: Adding separate spillover slopes for subjects

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\left(\beta_{4}+\zeta_{i}\right) \operatorname{Spill}_{i}+\epsilon_{i j} \tag{10}
\end{equation*}
$$

Random effects:
Formula: ${ }^{\wedge} 1+1$ logTRTn | subject
(Intercept) ${ }_{1}^{\text {StdDev }} 1.1921421$ (Intr
$\begin{array}{llll} & \\ \text { logTRTn } & 0.2076766 & -0.958 \\ 0 & 0.5913787 & \end{array}$
Residual 0.5913787
\gg ranef (fmOa . NP3)
$\begin{array}{lr}\text { (Intercept) } & \text { logTRTn } \\ -0.84606792 & 0.10298927\end{array}$
$\begin{array}{lll}29 & -0.84606792 & 0.102989271 \\ 30 & -0.19850234 & -0.002079418\end{array}$
Fixed effects: logTRT ~ similarity $+1 f+1$ en $+\log$ TRTn
(Intercept) Value Std.Error DF \quad t-value p-value $\begin{array}{lrrrrr} & 5.111320 & 0.4080183 & 394 & 12.527183 & 0.0000 \\ \text { similaritydissim } & -0.204901 & 0.0665910 & 394 & -3.077012 & 0.0022\end{array}$ $\begin{array}{llllll}\text { lf } & 0.025584 & 0.0230279 & 394 & 1.111013 & 0.2672\end{array}$ $\begin{array}{lrlrrr}\text { len } & -0.020878 & 0.0144536 & 394 & -1.444454 & 0.1494 \\ \text { logTRTn } & 0.170734 & 0.0545716 & 394 & 3.128623 & 0.0019\end{array}$

Comparing Models 1 and 2

Model	df	AIC	p-value
1	7	934.2326	
2	9	931.3991	0.0328

The model with the separate spillover slopes for each subject is a better fit.

Model 2 ANOVA

	numDF	denDF	F-value	p -value
(Intercept)	1	394	10165.61	$0.000000 \mathrm{e}+00$
similarity	1	394	4.66	$3.138734 \mathrm{e}-02$
If	1	394	6.51	$1.112292 \mathrm{e}-02$
len	1	394	2.33	$1.278449 \mathrm{e}-01$
logTRTn	1	394	9.79	$1.886893 \mathrm{e}-03$

The missing VP effect

- If VP2 is forgotten, then no disturbance should occur at VP1 in the missing VP conditions (c, d) compared to the grammatical conditions.
- If VP2 is not forgotten, a disturbance is expected at VP1 in the missing VP conditions (c, d).
a. [NP1+ [NP2+ [NP3+ VP3] VP2] VP1]
b. [NP1+ [NP2- [NP3+ VP3] VP2] VP1]
c. [NP1+ [NP2+ [NP3+ VP3] -] VP1]
d. [NP1+ [NP2- [NP3+ VP3] -] VP1]

Subject-Similarity interaction at V1

Subject-Spillover interaction at V1

Preceding region (Log RT)

Model 1: Spillover as fixed effect

$$
\begin{align*}
& y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Gram}_{i j}+\beta_{3} \operatorname{Spill}_{i}+\beta_{4} \operatorname{Sim}_{i j} \times \operatorname{Gram}_{i j}+\epsilon_{i j} \tag{11}\\
& \text { Random effects: } \\
& \text { Formula: ~1 | subject } \\
& \text { (Intercept) Residual } \\
& \text { StdDev: } \\
& 0.27004880 .5804452 \\
& \text { Fixed effects: logTRT ~ Sim * Gram + Spillover }
\end{align*}
$$

Model 1 ANOVA
Model 2: Separate intercepts and slopes for spillover

$$
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Gram}_{i j}+\left(\beta_{3}+\zeta_{i}\right) \operatorname{Spill}_{i}+\beta_{4} \operatorname{Sim}_{i j} \times \operatorname{Gram}_{i j}+\epsilon_{i j}
$$

Random effects:
Formula: ${ }^{\sim} 1+\operatorname{logTRTn} \mid$ subject
StdDev Corr
(Intercept) 0.8052335 (Intr)
logTRTn 0.1548788-0.988
Residual 0.5750767

	Value	Std.Error	DF	t-value	p-value
(Intercept)	3.51	0.29	522	12.04	0.00
Sim	-0.01	0.07	522	-0.17	0.86
Gram	0.096	0.07	522	1.4	0.16
Spillover	0.45	0.05	522	9.79	0.00
Sim:Gram	0.24	0.10	522	2.50	0.01

Model comparison

Some practical details regarding R usage

An example of the shape of the data that was used for the analyses:

subject	logTRT	lf grammaticality similarity		
100	4.767884	4.077537	gram	sim
104	6.080139	4.077537	gram	sim
109	5.913125	4.077537	gram	sim
113	5.594674	4.077537	gram	sim
117	6.355778	4.077537	gram	sim
121	7.960833	4.077537	gram	sim

Several packages can be used for linear mixed effects models in R. Two are nlme and lme4. I show the basic usage in the following slides, with reference to the examples shown above.

Similarity effect at NP2: Model 2

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+b_{i j}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \text { Freq }_{i}+\epsilon_{i j} \tag{14}
\end{equation*}
$$

nlme syntax:
fm1.NP2 <- lme(logTRT~similarity+len+lf+logTRTn, random= ${ }^{\sim} 1 \mid$ subject/similarity, data=pos5datafreqlen.gp, na.action=na.omit, method="REML")

Ime4 syntax:

fm1.NP2.lmer <- lmer(logTRT~similarity+len+lf+(1|subject)+ (1|subject:similarity),
data=pos5datafreqlen.gp, na.action=na.omit)

Similarity effect at NP2: Model 1

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\epsilon_{i j} \tag{13}
\end{equation*}
$$

nlme syntax:

$$
\begin{aligned}
& \text { fm0.NP2 <- lme } \begin{array}{l}
\text { (logTRT~similarity+len+lf+logTRTn, } \\
\\
\\
\\
\text { random=~1|subject, } \\
\text { data=pos5datafreqlen.gp, } \\
\text { na.action=na.omit, method="REML") }
\end{array} \\
& \text { Ime4 syntax: }
\end{aligned}
$$

fm0.NP2.lmer <- lmer(logTRT~similarity+len+lf+(1|subject), data=pos5datafreqlen.gp, na.action=na.omit)

Region preceding NP3: Model 1

$$
\begin{equation*}
y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \text { Freq }_{i}+\left(\beta_{4}\right) \operatorname{Spill}_{i}+\epsilon_{i j} \tag{15}
\end{equation*}
$$

nlme syntax:
fm0.NP3 <- lme(logTRT~similarity+lf+len+logTRTn, random= ${ }^{\sim} 1 \mid$ subject,
data=pos7datafreqlen,
na.action=na.omit)
Ime4 syntax:
fm0.NP3.lmer <- lmer (logTRT~similarity+lf+len+logTRTn+
(1|subject),
data=pos7datafreqlen,
na.action=na.omit)

Region preceding NP3: Model 2

$y_{i j}=\mu+b_{i}+\beta_{1} \operatorname{Sim}_{i j}+\beta_{2} \operatorname{Len}_{i}+\beta_{3} \operatorname{Freq}_{i}+\left(\beta_{4}+\zeta_{i}\right) \operatorname{Spill}_{i}+\epsilon_{i j}$

nlme syntax:

fm1.NP3 <- lme(logTRT~similarity+lf+len+logTRTn,
random $=\sim 1+\operatorname{logTRTn} \mid$ subject,
data=pos7datafreqlen,
na.action=na.omit)
Ime4 syntax:
\# Note: random intercept is implicit in (logTRTn|subject)
fm1.NP3.lmer <- lmer (logTRT~similarity+lf+len+logTRTn+
(logTRTn|subject), data=pos7datafreqlen, na.action=na.omit)
\# We can remove the random intercept term:
fm1.NP3.lmer <- lmer (logTRT~similarity+lf+len+logTRTn+
(logTRTn-1|subject), data=pos7datafreqlen, na.action=na.omit)
attach (pos5datafreqlen)
interaction.plot(similarity,itemnum,lf,las=1,
fun $=$ function(x) mean(x, na.rm=TRUE),
$y l a b=" \log$ (Frequency)",
xlab="Conditions",
lwd=2,
fixed=FALSE,
cex.lab=1.5,
col=rainbow (51))
detach(pos5datafreqlen)

XY plots in R

library (lattice)
theme <- canonical.theme (color = FALSE) \#\# in-built B\&W theme
 \#some sensible defaults for scales
scalelist <- list($x=1$ ist (alternating=0),
=list(alternating=1),
function for plotting the re
drawfittedline <- function (x, y) f
panel.xyplot (x, y)
panel.lmline (x, y, type="l", lwd=1, col="black") \}
print(xyplot(logTRT~1f|subject, pos5datafreqlen
xlab="Log frequency",
ylab="Log total reading times",
panel=drawfittedline
scales=scalelist))

Acknowledgements

Tom Santner and Sumithra Mandrekar at the statistical consultancy service in Ohio State University introduced me to linear mixed-effects models in 2000. I have also learnt much from Reinhold Kliegl's Winter 2005-06 course at Potsdam on the use of Ime in multiple regression research. Any errors in this document are of course my own responsibility.

