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� Inf. Stats
Two Variables

We often wish to compare two different variables

Examples: different tests results, age and ability, education (in years) and income,
speed and accuracy,...

Methods to compare two (or more) variables:

• correlation coefficient

• regression analysis

Notate bene!

• numeric variables
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� Inf. Stats
Background

Terminology: we speak of CASES, e.g., Joe, Sam, . . . and VARIABLES, e.g. height
(h) and weight (w). Then each variable has a VALUE for each case, hj is Joe’s height,
and ws is Sam’s weight.

We compare two variables by comparing their values for a set of cases,

• hj vs. wj

• hs vs. ws

• etc.
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� Inf. Stats
Tabular Presentation

Example: Hoppenbrouwers measured pronunciation differences among pairs of
dialects. We compare these to the geographic distance between places they’re spoken.

Dialect Pair Phon.Dist. Geo.Dist.

Almelo/Haarlem 0.58 100
Almelo/Kerkrade 1.18 200
Almelo/Makkum 0.90 250
Almelo/Roodeschool 0.81 220
Almelo/Soest 0.91 70
Haarlem/Kerkrade 1.06 230

...
...

...
Kerkrade/Soest 1.14 201
Makkum/Roodeschool 0.95 125
Makkum/Soest 1.00 216
Roodeschool/Soest 0.94 163

Two variables—phonetic and geographic distance, and 15 cases (here, each pair is
a separate CASE).
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� Inf. Stats
Scatterplots

One useful technique is to visualize the relation by graphing it.
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� Inf. Stats
Scatterplots

Each dot is a case, whose x-value is geo. distance, and y-value phon. distance.
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In general, we use x-axis for INDEPENDENT variables, and y for (potentially) DEPEN-
DENT ones. We don’t know whether phon. distance depends on geo. distance, but it
might (while reverse is implausible).
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� Inf. Stats
Least Squares Regression

The simplest form of dependence is LINEAR—the independent variable determines
a portion of the dependent value.

We can visualize this as fitting a straight line to the scatterplot.
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� Inf. Stats
Least Squares Regression

If the scatterplot clearly suggests not a straight line, but rather a curve of another
sort, you probably need to first TRANSFORM one of the data sets.

This is an advanced topic, but one which one need to keep in mind!
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� Inf. Stats
Least Squares Regression
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Like every straight line, this has an equation of the form: y = a + bx

a is the point where the line crosses the y-axis, the y-INTERCEPT, and b the SLOPE.
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� Inf. Stats
Predicted vs. Observed Values

The independent variable determines the dependent value (somewhat); this is the
predicted value ŷ—the value on the line.

Note also the actual y—the data dot, not always the same.
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� Inf. Stats
Residuals

The difference between predicted and actual values di = (ŷi − yi) is the
RESIDUAL—what the linear model does not predict. It is the vertical distance between
the dot and the line.

LEAST-SQARES REGRESSION finds the line which minimizes the squared
residuals—for all the data.

X

i

di
2 =

X

i

(ŷi − yi)
2
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� Inf. Stats
SPSS Regression

Least-sqares regression finds the best straight line which models the data (minimi-
zes the squared error).

* * M U L T I P L E R E G R E S S I O N * *

Equation Number 1 Dependent Variable.. PHON_DST
Block Number 1. Method: Enter GEO_DST

Analysis of Variance [ignore!]

----------- Variables in the Equation -------------
Variable B SE B

GEO_DST .001631 5.1714E-04
(Constant) .649778 .104898

y = 0.65 + 0.0016x
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� Inf. Stats
Residuals

Regression finds best line, but is sensitive to extreme values. Examine residuals.
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Note requirement in regression model that residuals be normally distributed. Check
via normal-quantile plot!

� � � 	 
 � 12



� �
� ���

� Inf. Stats
SPSS Plot of Residuals
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Save residuals as new variable, then graph vs. original x value.

Watch out for extreme x values—influential, though residual may be small. See
example 2.12 in Moore and McCabe.

Also examine OUTLIERS—large residuals.
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� Inf. Stats
Least Squares Regression∗

(optional)

How does regression work?

We express the squared residuals as a function of the line. This is a function in two
variables: a, the intercept, and b, the slope.

f(a, b) =
P

i di
2

=
P

i (ŷi − yi)
2

=
P

i ((a + bxi) − yi)
2

=
P

i (a + bxi − yi)
2

=
P

i a2 + 2abxi − 2ayi + b2xi
2 − 2bxiyi + yi

2

To minimize this function, find where its derivative f ′ = 0.
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� Inf. Stats
Least Squares Regression∗

f(a, b) =
P

i a2 + 2abxi − 2ayi + b2xi
2 − 2bxiyi + yi

2

To minimize a function in two variables, look at partial derivatives in fa
′, fb

′

fa
′(a, b) =

P

i 2a + 2bxi − 2yi

fb
′(a, b) =

P

i 2axi + 2bxi
2 − 2xiyi

We then set each partial derivative to zero, and solve (the pair of linear equations).
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� Inf. Stats
Regression—Tiny Example∗

Dialect Pair Phon.Dist. Geo.Dist.
Almelo/Haarlem 0.58 100
Almelo/Kerkrade 1.18 200
Kerkrade/Roodeschool 1.27 300

fa
′(a, b) =

P

i 2a + 2bxi − 2yi

= 2a + 2b(100) − 2 × 0.58+

2a + 2b(200) − 2 × 1.18+

2a + 2b(300) − 2 × 1.27

= 6a + 1200b − 6.06

fb
′(a, b) =

P

i 2axi + 2bxi
2 − 2xiyi

2a(100) + 2b(100)2 − 2 × 100 × 0.58

2a(200) + 2b(200)2 − 2 × 200 × 1.18

2a(300) + 2b(300)2 − 2 × 300 × 1.27

= 1200a + 280, 000b − 1350
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� Inf. Stats
Regression—Tiny Example∗

Now we solve these two linear equations (set to zero).

0 = 6a + 1200b − 6.06

6a = 6.06 − 1200b

a = 1.01 − 200b

0 = 1200(1.01 − 200b) + 280, 000b − 1350

= 1212 − 240, 000b + 280, 000b − 1350

40, 000b = 1350 − 1212

b = 138/40, 000 = 0.00345

a = 1.01 − 1200(0.00345) = 0.32
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� Inf. Stats
Example, Cont.

y = 0.32 + 0.00345x
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� Inf. Stats
Example, Cont.

* * M U L T I P L E R E G R E S S I O N * *
Equation Number 1 Dependent Variable.. PH_DISTX
Variable(s) Entered on Step Number

1.. GEO_DSTX

----------- Variables in the Equation ----------
Variable B SE B

GEO_DSTX .003450 .001472
(Constant) .320000 .318041
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� Inf. Stats
Linear Regression

• Asymmetric—appropriate when one variable might be “explained” by a second
– Reaction time on basis of difficulty — negative!
– Child’s ability on basis of parents’
– etc.

• No answer (yet) to how well does x explain y

CORRELATION analysis provides answers.

• Symmetric measure of extent to which variables predict each other

• Answer to how well does x explain y

Regression, correlation inappropriate when “best line” not straight (need transfor-
mations).

� � � 	 
 � 20



� �
� ���

� Inf. Stats
Correlation Coefficient

aka “Pearson’s product-moment correlation”

rx,y =
1

n − 1

X

„

x − x

sx

« „

y − y

sy

«

• reflects strength of relation
0 no correlation
1 perfect positive correlation
−1 perfect negative correlation

• no necessary dependence!
shoe size, reading ability correlate—both dependent on age
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� Inf. Stats
Correlation Coefficient

- - Correlation Coefficients - -

GEO_DST PHON_DST
GEO_DST 1.0000 .6584

( 15) ( 15)
P= . P= .008

PHON_DST .6584 1.0000

—geographic and phonetic distance correlate at 0.65
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� Inf. Stats
Correlation

rx,y =
1

n − 1

X

„

x − x

sx

« „

y − y

sy

«

alternative:

rx,y =
1

n − 1

n
X

i=1

zxi
zyi

• r “pure number” — no units
• insensitive to scale, percentages, ...

corr. w. temperature can ignore scale
• symmetric rx,y = ry,x
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� Inf. Stats
Properties of Correlation

rx,y =
1

n − 1

n
X

i=1

zxi
zyi

• r measures “clustering” relative to σx, σy

as r → 1(or − 1), dots cluster near regression line

• careful when “eyeing” data
– change in σ affects apparent clustering
– separate clusters lose in correlation
– watch for nonlinear relations
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� Inf. Stats
Correlation/Regression

regression analysis —r2: how much of y’s variance may be atributed to x?

• regression requires that residuals be normally distributed
• nonsymmetric: y analyzed as dependent on x

• smoothed plot of y averages (for x groups)
• always flatter than SD line, the line with slope σy/σx which passes through

(mx, my)

• regression line (Gauss):

y = a + bx

then

b = r
σy

σx
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� Inf. Stats
Interpretation of Correlation via Averages.

Example: height, weight have corr. coeff. r = 0.5

µh = 178cm, µw = 72kg, σh = 6cm, σw = 6kg

• for each σx, there are r · σy’s

• what is ave. weight of those 184 cm tall?

184cm = 178 + 6cm
= µh + 1 · σh

δσh
= 1

w184cm = µw + rw,h · δσh
· σw

= 72kg + 0.5 · 1 · 6kg
= 75kg
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� Inf. Stats
Interpretation of Correlation via Averages.

• for each σx, there are r · σy’s, 0 ≤ r ≤ 1.

• ⇒ δw less (in z terms) than δh

since r ≤ 1 averages of correlated variables must “regress” toward mean
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� Inf. Stats
Regression Fallacy

Height/weight example: In figuring w for restricted groups: δw less (in z terms)
than δh

Since r ≤ 1, averages of corr. var. must “regress”—but this is purely mathematical,
no causal

“Regression fallacy”: —seeing causation in regression

• height correlation between parents and children (r = 0.4)
but very tall parents have less tall children (still taller than ave.)

• test-retest situations show extremes (high and low) closer to mean on second test

• “the course showed no general improvement, but the worst students improved”
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� Inf. Stats
Correlation

• measures strength of linear relation

• symmetric rx,y = ry,x

• related to slope of regression line

Caution needed:

• outliers — reduce r

• nonlinear association, e.g. intensity vs. loudness

• “ecological correlations” use averages, rates
popular in politics, but overstate r (based on individuals)

• correlation 6→ causation
example: shoe size and reading ability
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� Inf. Stats
Regression Error

µ : σ :: regression line : regression error

regr. error measures dispersion around regr. line

regr. error can be calculate as standard deviation (from regression line, but also
(shorter) =

√
1 − r2 × σy

n.b. reg.error ≤ σy
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� Inf. Stats
SPSS Plot of Regression Error
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Shows ±2 standard errors around regression line—where 95% of data must be
found.

� � � 	 
 � 31

�������

Inf.
S

tats
N

ext:
M

u
ltip

le
R

eg
ressio

n

���
	

�

32


