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Humanities Statistics—Hypotheses

Lots of humanities issues are EMPIRICAL and VARIABLE

empirical — involving matters of fact, not purely conceptual
variable — issues that may be decided in different ways for different

individual cases

We regard these as hypotheses to be tested.

Examples of empirical, variable hypotheses:
sex is related to verbal fluency
web sites with banners get more attention
grammatical structure influences language processing

Statistical analysis needed for EMPIRICAL, VARIABLE hypotheses.
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Hypothesis Testing

We begin with a research question, which we try to formulate as a hypothesis

sex is related to verbal fluency
web sites with banners get more attention
grammatical structure influences language processing

Normally, we need to translate this to a concrete form before statistics are
useful

men and women score differently on tests of verbal fluency
web sites with banners are revisited more often
object relative clauses (i.e., those in which relative pronouns are
grammatical objects) take longer to read than subject relative clauses
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Abstraction

Given a research question, translated into a concretely testable hypothesis
web sites with banners are revisited more often

= “all web sites with banners are revisited more often than web sites without
banners”?
—probably not. The data is variable, there are other factors:

amount of information (library system)
value of information (Centraal Bureau voor Statistiek)
changeability of data (weather, flight arrivals)

We normally need statistics to abstract away from the variability of the
observations.

web sites with banners are revisited more often on average
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Subject Matter

web sites with banners are revisited more often on average

We must study this on the basis of a limited number of web sites — a
SAMPLE. But we’re interested in the larger class of all web sites — the
POPULATION.
The hypothesis concerns the population, which is studied through a
representative sample.

men and women differ in verbal fluency (study based on 30 men and 30
women)
web sites with banners are revisited to more often (studied on the basis
of 30 web sites)
object relative clauses take longer to read than subject relative
clauses (studied on the basis of 30 people’s reading of 20 relative
clauses of each type).
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Analysis

Given a research question, translated into a concretely testable hypothesis,
expressed abstractly

web sites with banners are revisited more often on average
You measure rates of revisiting for a randomly selected group of sites, with
and without banners.
Will any difference in averages (in the right direction) be proof?
—probably not. Very small differences might be due to chance.
We normally need statistics to analyse results.

STATISTICALLY SIGNIFICANT results are those unlikely to be due to
chance.
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Samples and Populations

Selecting a sample from a population includes an element of chance—which
individuals are studied?
Fortunately, we know a lot about the likely relation between samples and
populations — the Central Limit Theorem
Central Limit Theorem relates sample means to likely population mean.
To understand it, imagine all the possible samples one might use, and all
those sample means—the distribution of the sample means.
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Central Limit Theorem

Background: Population standard deviation must be known (e.g., as for
standardized tests—IQ, CITO, ...)

Sample means (x̄) are always be normally distributed.
Mean of samples means is population mean.

mx̄ = µ

Standard deviation (sd) among samples is systematically smaller than σ
(population sd) among individuals.

SE = sx̄ =
σ√
n

, where n is sample size

Central Limit Theorem: Sample mean has dist. N(µ, σ/
√

n).
—note importance of sample size
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z-Tests

Given a RANDOMLY SELECTED SAMPLE, we know

distribution it is one of a normally distributed population of samples
mean mx̄ = µ —the mean of such samples will be the population

mean
standard deviation sdx̄ = σ/

√
n —the standard deviation of the sample

means (the STANDARD ERROR) will be less population’s
standard deviation by a factor of 1/

√
n

These facts allow us to reason about the population.
The reasoning will always include a probability that population has a mean of
a given size.
An essential assumption is that the sample is randomly selected. We can’t
correct for biased data—even unintentionally biased.
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Normal Distribution (Review)

µ-3σ µ-2σ µ-σ µ µ+σ µ+2σ µ+3σ

We consider an element x within a normal distribution, esp. the probability of
x having a value near the mean.

P(µ− σ ≤ x ≤ µ + σ) = 68%
P(µ− 2σ ≤ x ≤ µ + 2σ) = 95%
P(µ− 3σ ≤ x ≤ µ + 3σ) = 99.7%
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Normal Distribution (Review)

µ-3σ µ-2σ µ-σ µ µ+σ µ+2σ µ+3σ

If we convert x to a “standard z score” (z = x − µ/σ), where µ = 1 and σ = 1:

P(−1 ≤ z ≤ 1) = 68%
P(−2 ≤ z ≤ 2) = 95%
P(−3 ≤ z ≤ 3) = 99.7%
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Example Application of z-test

You suspect that CALL programs may be effective for young children (since
they can be initiated before reading, and look like computer games, need little
supervision, ...).
You have a standard test for English proficiency, where µ = 70, σ = 14. You
apply the same test to 49 randomly chosen schoolchildren who’ve had a
CALL program at home for three years. Result: x̄ = 74
Since this is a sample, we compute a standard error SE
= σ/

√
n = 14/

√
49 = 2. We see that this sample is two standard deviations

above the established population mean!

Since this is a sample mean, it is normally distributed, so that we can
conclude that this sample is at the 97.5%-ile of all such samples.
There is only a 2.5% probability that the sample mean would be this high by
chance.
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CALL Conclusions

You apply a test to kids who’ve used a CALL program, the result is a z-score
of 2, and the chance of this is 2.5%. It’s very unlikely that this arose by chance
(it would happen once every forty times).
Conclusion: the CALL programs are probably helping.
Notate bene: it is possible that the programs are not helping at all, and that
the sample happened to include lots of proficient kids. ...There might be many
confounding factors.
(Try to think of some.)
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Importance of Sample Size

Suppose you had applied the test to only 9 kids who’ve used a CALL program
with the same result of 74, where the test (as above) has scores with
µ = 70, σ = 14.
Then standard error would be greater: SE = σ/

√
n = 14/

√
9 = 4.7. In this

case the sample (x̄ = 74) would be less than 1 SE above the population mean
(µ = 70), i.e., at less than the 68th percentile — not very surprising. Samples
means this high are found 32% of the time by chance.
Then we’d have no reason to suspect any special effect of CALL programs.
This could be a CHANCE EFFECT
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Analysing the Reasoning

Statisticians have analyzed this reasoning in the following way.
We always imagine two hypotheses about the data, a NULL HYPOTHESIS, H0,
and an alternative, Ha. In the CALL example:

H0 : µCALL = 70
Ha : µCALL > 70

Ha looks right, since 74 > 70. But this is insufficient evidence, since some
differences could be due to chance.
We formulate a null hypothesis in order to measure the likelihood of the data
we collect.

Logically, we’d prefer to formulate H0 : µCALL ≤ 70, exactly the negation of
Ha. But we usually see ‘=’ in formulations.
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The Reasoning
H0 : µCALL = 70
Ha : µCALL > 70

We reason as follows: if H0 is right, what is the chance p of a random sample
with x̄ = 74? We obtain a p-value by converting the score to a z-score, and
checking its probability in a table.

zx = (x − µ)/σ
z74 = (74− 70)/2 = 2

A check in the tables for the standard normal distribution show
P(z ≥ 2) = 0.025, and so the chance of the sample is just
P(x̄ = 74) = 0.025. This is the p-VALUE, aka MEASURED SIGNIFICANCE
LEVEL, or overschrijdingskans.
If H0 is correct, and kids with CALL experience have the same language
proficiency as others, then the observed sample would be expected only 2.5%
of the time. As always, small values of p are strong evidence against the null
hypothesis.

John Nerbonne 17/44

Statistically Significant?

We have H0, Ha and a way to calculate the chances of samples assuming H0.
In the CALL example, we know that 49-element samples have a dist.
N(70, 14/

√
49)

H0 : µCALL = 70
Ha : µCALL > 70

The classical test specifies a level of likelihood that must be attained for a test
to count as significant, the threshold SIGNIFICANCE LEVEL, or α-LEVEL.
This is a level which the p-value is compared against. Most common are
α = 0.05 and α = 0.01, but stricter levels may be required if important
decisions depend on results.

The p-value is the chance of encountering the sample, assuming that the H0
is right. The α-level is the threshold beyond which we regard the result as
significant.
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Is the p-value below α?

H0 : µCALL = 70
Ha : µCALL > 70

Given the sample of 49 with mean m = 74 in the dist. N(70, 14/
√

49), we
calculate p = 0.025. This is below 0.05, but not below 0.01.
So the result was SIGNIFICANT AT THE α = 0.05 LEVEL, but not at the
0.01-level.

Reminder: work out the pencil-&-paper exercise on sampling statistics!
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Summary of Significance Tests

Step 1 Formulate H0, Ha—your research question.
Test statistic (e.g., sample mean) is specified as is underlying
dist. (assuming H0).

Step 2 Specify the α-level—the level at which H0 will be rejected.

z* = 2.326

Reject H0rejected
H0 can’t be

α = 0.01

the α-level of 0.01 for a test based on the normal distribution.
Step 3 Calculate the statistic which the test uses (e.g., mean).
Step 4 Calculate the p-value, and compare it to the α-level.
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Summary of Significance Tests

Step 1 Formulate H0, Ha—your research question.
Step 2 Specify the α-level—the level at which H0 will be rejected.

Some books recommend that Step 2 include a computation of the “critical
values” of the test statistic—the values which will lead to rejection of H0.
At α = 0.05, the critical region is z|P(z) ≤ 0.05, i.e. z ≥ 1.65. We can
translate this back to raw scores by using the z formula.

zx = (x − µ)/σ
1.65 = (x − 70)/2
3.3 = x − 70
x = 73.3

Implicitly done by statistical software, so we omit it hence.
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One-sided z-tests

Formally, our CALL example is a z-test because it is based on a normal
distribution whose mean µ and sd σ are known.
In every case we calculate the mean of a random sample m, and a z-value
based on it, where z is, as usual, z = (m − µ)/(σ/

√
n)

It can take many forms, depending on which values of z are predicted in the
Ha.

Ha predicts high m CALL programs improve foreign language ability of
children. p = P(Z ≥ z)

Ha predicts low m Brocoli eaters have low chlosterol levels. p = P(Z ≤ z)

These are called ONE-SIDED tests because H0 will be rejected on the basis of
p values on one side of the distribution.
But sometimes Ha doesn’t predict high or low, just different.
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Two-sided z-tests

Sometimes Ha doesn’t predict high or low, just different.
Example You wish to use a children’s test for aphasia developed in the UK
(after translation). The test developers claim that scores are distributed
N(100, 10) on nonaphasic children. To validate its use after translation, you
could test it on 25 normal Dutch children.
In this case H0 predicts that µO = µT (translation has same mean as original),
and Ha : µO 6= µT , but without specifying whether µT is higher or lower than
µO .
Suppose we again require a significance level of α = 0.01.
In this case, both extremely high and extremely low sample means give
reason to reject H0.
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Two-sided z-tests

Ha predicts extreme m at α = 0.01, we need a x̄ in the most extreme 1% of
the distribution in order to reject H0, i.e. in the highest 0.5% or
the lowest 0.5%.

-z* = -2.576 z* = 2.576

Reject H0Reject H0 be rejected
H0 can’t

α
2

 = 0.005 α
2

 = 0.005

the most extreme 1% of the normal distribution is divided into the lowest 0.5%
and the highest 0.5%. p-values must reflect the probability of Z ≥ |z|, either
Z ≥ z or Z ≤ −z. z-values in both tails of the distribution give grounds for
rejection of H0.
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Understanding Significance

Recall the language teaching example. Hypotheses were:

H0 : µCALL = 70
Ha : µCALL > 70

Given a 49-element samples, we have dist. N(70, 14/
√

49) The sample mean
of m = 74 has a measured significance level of p = 0.025. This is significant
at the α = 0.05, but not at the level of α = 0.01.
If you’re sure of m = 74, and if you wanted significance at α = 0.01, you could
ask how large the sample would need to be.
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Chasing Significance

If you’re sure of m = 74, and if you wanted significance at α = 0.01, you could
ask how large the sample would need to be.
α = 0.01 corresponds to z = 2.33 (tables), so we can derive:

z = (x̄ − µ)/(σ/
√

n)
2.33 = (74− 70)/(14/

√
n)

= 4
√

n/14√
n = (2.33× 14)/4
n ≈ 67

A sample size of 67 would show significance at the α = 0.01 level assuming
the sample mean stayed at x̄ = 74.
Would it be sensible to collect the extra data?

John Nerbonne 26/44



Understanding Significance

Is it sensible to collect the extra data to “push” a result to significance?
No. At least, usually not.
The real result is the extent of the difference (4 pt.) This does not change in
the hypothetical example. You have to know whether this difference in ability
has consequences (e.g., in the policies of the school you work in, or in buying
software for your kids, or whatever).
“Statistically significant” implies that an effect probably is not due to chance,
but the effect can be very small.

This is a two-edged sword: just because an effect was not demonstrated to be
statistically significant doesn’t mean that nothing important is going on. It
means you’re not sure.
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Misuse of Significance

Garbage in, garbage out If the experiment poorly designed, or the data is
poorly collected, no amount of statistical sophistication can
repair the situation.

No “significance hunting” Hunting among dozens of variables is likely to turn
up some extreme results. Multiple tests need to be analyzed
especially if statistical significance is to be claimed.
Looking at many variables can be useful in early stages of
investigation—before hypothesis testing.

Power of Statistical Tests Some tests are more sensitive than others, and this
makes them more useful. Relatively insensitive tests may show
no significance even when an effect is genuine.
More formally, the discriminatory power of a test is likelihood
that H0 will be rejected when Ha is true.
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Confidence Interval

An alternative view of statistical significance.
Example: you want to know how many hours per week a student in
information science works (outside of study, to earn money). You know the
standard deviation for the university is approx. 1 hr./week

σ = 1hr./wk
collect info from 100 people
calculcate m = 5hr./wk
therefore µ = 5hr., SE is 1hr./

√
100 = 0.1hr.

Sample is randomly chosen, thus subject to random error. It is one of many
samples (whose theoretical distribution you know).
How certain are you of this estimate?
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Confidence Interval

σ = 1hr./wk
collect info from 100 people
calculcate m = 5hr./wk
therefore estimate µ ≈ 5hr., SE is 1hr./

√
100 = 0.1hr.

Since it is part of a normal distribution, we can apply the usual reasoning to
obtain an ERROR MARGIN. For example:
68% of all elements of this distribution will fall in the interval
m ± 1sd = m ± 0.1.
95% of all elements of this distribution will fall in the interval
m ± 2sd = m ± 0.2.
We are 95% confident that µ is in the interval
5hr./wk.± 0.2hr./wk. = (4.8hr./wk., 5.2hr./wk.) where 5hr./wk. is the
estimate, & 0.2hr./wk. the error margin
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Confidence Interval

Example: how much do students work (per week)?

n = 100, σ = 1/wk
calculcate m = 5hr , /wk
therefore µ ≈ 5hr./wk., SE is 1hr./wk./

√
100 = 0.1hr./wk.

We can specify many confidence intervals.

68%conf. interval m ± 1σ 4.9 ≤ m ≤ 5.1 (4.9, 5.1)
95%conf. interval m ± 2σ 4.8 ≤ m ≤ 5.2 (4.8, 5.2)

99.7%conf. interval m ± 3σ 4.7 ≤ m ≤ 5.3 (4.7, 5.3)

Note that larger (less exact) intervals can always be specified at higher
confidence levels. We trade confidence for precision.
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Confidence Interval

z*- z* 0

Surface = C

Surface
1- C

2
=

Surface
1- C

2
=

Summary
With confidence C we identify an interval within which a mean µ is
expected to fall
Exercise 2 (single sample t-tests) involves a confidence interval where
the standard deviation is effectively estimated.
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Significance Tests vs. Confidence Interval

z*- z* 0

Surface = C

Surface
1- C

2
=

Surface
1- C

2
=

Hypothesis tests typically identify a 95% CI within which sample results
should fall if H0 is correct.
To confirm a two-sided hypothesis at level α, a sample statistic outside the
central 1− α is needed—i.e., outside the 1− α CONFIDENCE INTERVAL

John Nerbonne 33/44

Hypothesis Testing

A statistical hypothesis concerns a population about which a hypothesis is
made involving some statistic

population (all web sites)
parameter (statistic) (rate of revisiting)
hypothesis (ave. rate of revisiting higher when banners used)

always about populations, not just about samples
sampling statistic identified

mean
frequencies
...

John Nerbonne 34/44



Identifying Hypotheses

ALTERNATIVE HYPOTHESIS (= original hypothesis) is contrasted with NULL
HYPOTHESIS — hypothesis that nothing out of the ordinary is involved.

Ha: (ave. rate of revisiting is higher when banners used)

contrasts with NULL HYPOTHESIS:

H0 (null hypothesis): (banners make no difference in ave. rate of
revisiting)

Logically, H0 should imply ¬Ha
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Quantifying Significance

STATISTICALLY SIGNIFICANT results are those unlikely to be due to
chance.

We quantify significance by estimating how likely it is that results could be due
to chance.
Concretely: if the null hypothesis were true, how likely would the sample
statistic be?
Example: If in fact banners make no difference in how often web sites are
revisited, how likely is it that a sample of 20 web sites with and without
banners would show that 18% of the visitors return to the former and only 13%
to the latter?
p-VALUE is the chance of sample given H0
A low p-value is evidence against H0, and for Ha
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“Significant at the 0.05 level”

We normally determine in advance which significance level is required for
(probabilistic) proof.
For example, we may agree that any result with a p-value less that 0.05 is
sufficient proof against the H0 (and therefore for the Ha) that we will be
convinced.
The p-value that is determined to be sufficient for the rejection of H0 is
referred to as the α-LEVEL
We may then report the results of the experiment as “significant at the
p ≤ 0.05-level” or “significant at the 0.05-level”.
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Other Significant Levels

Sometimes, α is determined to be 0.01, sometimes 0.001
α is threshold of REGION OF REJECTION — score needed to reject H0 (and
accept Ha)
—low values unlikely if H0 is true, likely if Ha true
Size of region (value of α) inversely proportional to acceptable risk (of wrongly
accepting Ha)
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Other Significant Levels — Example

Example: You have aphasia test, with known µ (mean), σ (standard deviation)
from US, & may wish to use it in the Netherlands
H0: µUS = µNL (same population, therefore same µ)
Ha: µUS 6= µNL (different populations, maybe due to language dependencies)
region of rejection: 0.05
—you reject H0 even though results would be consistent 5% of time
Region of rejection variable

perhaps new test very expensive
perhaps this aspect of diagnosis not essential
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Interpreting Results

1 Take a sample (of n aphasic patients), administer test, determine µNL.
2 Determine z score for sample of n.

z =
µNL − µUS

σ/
√

n

3 Use tables to determine chance of z score, P(z). This is the p-value, the
chance of the sample if µNL = µUS(= H0)

4 If sample statistic is in rejection region, e.g., p < 0.01, reject H0 in favor of
Ha (statistically significant)

5 If sample statistic not in rejection region, then either accept H0 or
suspend judgement
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Possible Errors

You could, of course, be wrong.
The selection of the sample could be unlucky (unrepresentative). Possibilities:

H0 true false

accepted correct type II error

rejected type I error correct

Type I Errors — focus of hypothesis testing
p-value – chance of a type I error
α-level: boundary of acceptable level of type I error
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Formulating Results

H0 true false
accepted correct type II error
rejected type I error correct

Note that results with p = 0.06 aren’t very different from p = 0.05, but we
need to specify a boundary. 0.05 is low because the “burden of proof” is on
the alternative.
In these cases we certainly don’t feel that we’ve proven H0, only that we’ve
failed to show convincingly that it’s wrong.
We speak of “retaining H0” (“H0 handhaven”).
Type II Errors (null hypothesis accepted by false)
β —probability of type II error
1− β —“power of statistical test” (no further mention in this course)
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Degrees of Freedom

Most hypothesis-tests require that one specify DEGREES OF FREEDOM (dF )
— the number of ways in which data could vary (and still yield same result).
Example: 5 data points, mean
If mean & 4 data points known, fifth is determined
Mean 6, data is 4, 5, 7, 8 and one unknown
� fifth = 6
There are four degrees of freedom in this set.
In general, with n numbers, n − 1 degrees of freedom (for the mean).
Reminder: Pencil & Paper Exercise on Sampling Statistics
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Z-tests
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