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Humanities Statistics—Hypotheses

Lots of humanities issues are EMPIRICAL and VARIABLE

empirical — involving matters of fact, not purely conceptual
variable — issues that may be decided in different ways for different individual cases

We regard these as hypotheses to be tested.

Examples of empirical, variable hypotheses:

• sex is related to verbal fluency
• web sites with banners get more attention
• grammatical structure influences language processing

Statistical analysis needed for EMPIRICAL, VARIABLE hypotheses.
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Hypothesis Testing

We begin with a research question, which we try to formulate as a hypothesis

• sex is related to verbal fluency

• web sites with banners get more attention

• grammatical structure influences language processing

Normally, we need to translate this to a concrete form before statistics are useful

• men and women score differently on tests of verbal fluency

• web sites with banners are revisited more often

• object relative clauses (i.e., those in which relative pronouns are grammatical ob-
jects) take longer to read than subject relative clauses
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Abstraction

Given a research question, translated into a concretely testable hypothesis

• web sites with banners are revisited more often

= “all web sites with banners are revisited more often than web sites without banners”?

—probably not. The data is variable, there are other factors:

• amount of information (library system)
• value of information (Centraal Bureau voor Statistiek)
• changeability of data (weather, flight arrivals)

We normally need statistics to abstract away from the variability of the observations.

• web sites with banners are revisited more often on average
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Subject Matter

• web sites with banners are revisited more often on average

We must study this on the basis of a limited number of web sites — a SAMPLE. But
we’re interested in the larger class of all web sites — the POPULATION.

The hypothesis concerns the population, which is studied through a representative sam-
ple.

• men and women differ in verbal fluency (study based on 30 men and 30 women)

• web sites with banners are revisited to more often (studied on the basis of 30 web
sites)

• object relative clauses take longer to read than subject relative clauses (studied
on the basis of 30 people’s reading of 20 relative clauses of each type).
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Analysis

Given a research question, translated into a concretely testable hypothesis, expressed
abstractly

• web sites with banners are revisited more often on average

You measure rates of revisiting for a randomly selected group of sites, with and without
banners.

Will any difference in averages (in the right direction) be proof?

—probably not. Very small differences might be due to chance.

We normally need statistics to analyse results.

• STATISTICALLY SIGNIFICANT results are those unlikely to be due to chance.
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Samples and Populations

Selecting a sample from a population includes an element of chance—which individuals
are studied?

Fortunately, we know a lot about the likely relation between samples and populations
— the Central Limit Theorem

Central Limit Theorem relates sample means to likely population mean.

To understand it, imagine all the possible samples one might use, and all those sample
means—the distribution of the sample means.
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Central Limit Theorem

Background: Population standard deviation must be known (e.g., as for standardized
tests—IQ, CITO, ...)

• Sample means (x̄) are always be normally distributed.
• Mean of samples means is population mean.

mx̄ = µ

• Standard deviation (sd) among samples is systematically smaller than σ (population
sd) among individuals.

SE = sx̄ =
σ
√

n
, where n is sample size

Central Limit Theorem: Sample mean has dist. N(µ, σ/
√

n).
—note importance of sample size
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z-Tests

Given a RANDOMLY SELECTED SAMPLE, we know

distribution it is one of a normally distributed population of samples

mean mx̄ = µ —the mean of such samples will be the population mean

standard deviation sdx̄ = σ/
√

n —the standard deviation of the sample means (the
STANDARD ERROR) will be less population’s standard deviation by a factor of 1/

√
n

These facts allow us to reason about the population.

The reasoning will always include a probability that population has a mean of a
given size.

An essential assumption is that the sample is randomly selected. We can’t correct
for biased data—even unintentionally biased.
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Normal Distribution (Review)

µ-3σ µ-2σ µ-σ µ µ+σ µ+2σ µ+3σ

We consider an element x within a normal distribution, esp. the probability of x

having a value near the mean.

P (µ − σ ≤ x ≤ µ + σ) = 68%

P (µ − 2σ ≤ x ≤ µ + 2σ) = 95%

P (µ − 3σ ≤ x ≤ µ + 3σ) = 99.7%
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Normal Distribution (Review)

µ-3σ µ-2σ µ-σ µ µ+σ µ+2σ µ+3σ

If we convert x to a “standard z score” (z = x − µ/σ), where µ = 1 and σ = 1:

P (−1 ≤ z ≤ 1) = 68%

P (−2 ≤ z ≤ 2) = 95%

P (−3 ≤ z ≤ 3) = 99.7%
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Example Application of z-test

You suspect that CALL programs may be effective for young children (since they can be
initiated before reading, and look like computer games, need little supervision, ...).

You have a standard test for English proficiency, where µ = 70, σ = 14. You apply
the same test to 49 randomly chosen schoolchildren who’ve had a CALL program at
home for three years. Result: x̄ = 74

Since this is a sample, we compute a standard error SE = σ/
√

n = 14/
√

49 = 2.
We see that this sample is two standard deviations above the established population
mean!

Since this is a sample mean, it is normally distributed, so that we can conclude that
this sample is at the 97.5%-ile of all such samples.

There is only a 2.5% probability that the sample mean would be this high by chance.
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CALL Conclusions

You apply a test to kids who’ve used a CALL program, the result is a z-score of
2, and the chance of this is 2.5%. It’s very unlikely that this arose by chance (it would
happen once every forty times).

Conclusion: the CALL programs are probably helping.

Notate bene: it is possible that the programs are not helping at all, and that the
sample happened to include lots of proficient kids. ...There might be many confounding
factors.

(Try to think of some.)
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Importance of Sample Size

Suppose you had applied the test to only 9 kids who’ve used a CALL program with
the same result of 74, where the test (as above) has scores with µ = 70, σ = 14.

Then standard error would be greater: SE = σ/
√

n = 14/
√

9 = 4.7. In this case
the sample (x̄ = 74) would be less than 1 SE above the population mean (µ = 70),
i.e., at less than the 68th percentile — not very surprising. Samples means this high
are found 32% of the time by chance.

Then we’d have no reason to suspect any special effect of CALL programs.

This could be a CHANCE EFFECT

� � � 	 
 � 13

� �
� ���

� Intro Stats
Analysing the Reasoning

Statisticians have analyzed this reasoning in the following way.

We always imagine two hypotheses about the data, a NULL HYPOTHESIS, H0, and
an alternative, Ha. In the CALL example:

H0 : µCALL = 70

Ha : µCALL > 70

Ha looks right, since 74 > 70. But this is insufficient evidence, since some diffe-
rences could be due to chance.

We formulate a null hypothesis in order to measure the likelihood of the data we
collect.

Logically, we’d prefer to formulate H0 : µCALL ≤ 70, exactly the negation of Ha.
But we usually see ‘=’ in formulations.
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The Reasoning

H0 : µCALL = 70

Ha : µCALL > 70

We reason as follows: if H0 is right, what is the chance p of a random sample with
x̄ = 74? We obtain a p-value by converting the score to a z-score, and checking its
probability in a table.

zx = (x − µ)/σ

z74 = (74 − 70)/2 = 2

A check in the tables for the standard normal distribution show P (z ≥ 2) = 0.025,
and so the chance of the sample is just P (x̄ = 74) = 0.025. This is the p-VALUE, aka
MEASURED SIGNIFICANCE LEVEL, or overschrijdingskans.

If H0 is correct, and kids with CALL experience have the same language proficiency
as others, then the observed sample would be expected only 2.5% of the time. As
always, small values of p are strong evidence against the null hypothesis.
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Statistically Significant?

We have H0, Ha and a way to calculate the chances of samples assuming H0. In
the CALL example, we know that 49-element samples have a dist. N(70, 14/

√
49)

H0 : µCALL = 70

Ha : µCALL > 70

The classical test specifies a level of likelihood that must be attained for a test to
count as significant, the threshold SIGNIFICANCE LEVEL, or α-LEVEL.

This is a level which the p-value is compared against. Most common are α = 0.05

and α = 0.01, but stricter levels may be required if important decisions depend on
results.

The p-value is the chance of encountering the sample, assuming that the H0 is
right. The α-level is the threshold beyond which we regard the result as significant.
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Is the p-value below α?

Given the sample of 49 with mean m = 74 in the dist. N(70, 14/
√

49), we
calculate p = 0.025. This is below 0.05, but not below 0.01.

So the result was SIGNIFICANT AT THE α = 0.05 LEVEL, but not at the 0.01-level.
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Summary of Significance Tests

Step 1 Formulate H0, Ha—your research question.
Test statistic (e.g., sample mean) is specified as is underlying dist. (assuming H0).

Step 2 Specify the α-level—the level at which H0 will be rejected.

z* = 2.326

Reject H0rejected
H0 can’t be

α = 0.01

the α-level of 0.01 for a test based on the normal distribution.

Step 3 Calculate the statistic which the test uses (e.g., mean).

Step 4 Calculate the p-value, and compare it to the α-level.
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Summary of Significance Tests

Step 1 Formulate H0, Ha—your research question.
Step 2 Specify the α-level—the level at which H0 will be rejected.

Some books recommend that Step 2 include a computation of the “critical values”
of the test statistic—the values which will lead to rejection of H0.

At α = 0.05, the critical region is z|P (z) ≤ 0.05, i.e. z ≥ 1.65. We can translate
this back to raw scores by using the z formula.

zx = (x − µ)/σ

1.65 = (x − 70)/2

3.3 = x − 70

x = 73.3

Implicitly done by statistical software, so we omit it hence.
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One-sided z-tests

Formally, our CALL example is a z-test because it is based on a normal distribution
whose mean µ and sd σ are known.

In every case we calculate the mean of a random sample m, and a z-value based
on it, where z is, as usual, z = (m − µ)/(σ/

√
n)

It can take many forms, depending on which values of z are predicted in the Ha.

Ha predicts high m CALL programs improve foreign language ability of children. p =

P (Z ≥ z)

Ha predicts low m Brocoli eaters have low chlosterol levels. p = P (Z ≤ z)

These are called ONE-SIDED tests because H0 will be rejected on the basis of p

values on one side of the distribution.

But sometimes Ha doesn’t predict high or low, just different.
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Two-sided z-tests

Sometimes Ha doesn’t predict high or low, just different.

Example You wish to use a children’s test for aphasia developed in the UK (after
translation). The test developers claim that scores are distributed N(100, 10) on no-
naphasic children. To validate its use after translation, you could test it on 25 normal
Dutch children.

In this case H0 predicts that µO = µT (translation has same mean as original), and
Ha : µO 6= µT , but without specifying whether µT is higher or lower than µO.

Suppose we again require a significance level of α = 0.01.

In this case, both extremely high and extremely low sample means give reason to
reject H0.
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Two-sided z-tests

Ha predicts extreme m at α = 0.01, we need a x̄ in the most extreme 1% of the
distribution in order to reject H0, i.e. in the highest 0.5% or the lowest 0.5%.

-z* = -2.576 z* = 2.576

Reject H0Reject H0 be rejected
H0 can’t

α
2

 = 0.005 α
2

 = 0.005

the most extreme 1% of the normal distribution is divided into the lowest 0.5% and
the highest 0.5%. p-values must reflect the probability of Z ≥ |z|, either Z ≥ z or
Z ≤ −z. z-values in both tails of the distribution give grounds for rejection of H0.
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Understanding Significance

Recall the language teaching example. Hypotheses were:

H0 : µCALL = 70

Ha : µCALL > 70

Given a 49-element samples, we have dist. N(70, 14/
√

49) The sample mean of
m = 74 has a measured significance level of p = 0.025. This is significant at the
α = 0.05, but not at the level of α = 0.01.

If you’re sure of m = 74, and if you wanted significance at α = 0.01, you could
ask how large the sample would need to be.

� � � 	 
 � 23

� �
� ���

� Intro Stats
Chasing Significance

If you’re sure of m = 74, and if you wanted significance at α = 0.01, you could
ask how large the sample would need to be.

α = 0.01 corresponds to z = 2.33 (tables), so we can derive:

z = (x̄ − µ)/(σ/
√

n)

2.33 = (74 − 70)/(14/
√

n)

= 4
√

n/14√
n = (2.33 × 14)/4

n ≈ 67

A sample size of 67 would show significance at the α = 0.01 level assuming the
sample mean stayed at x̄ = 74.

Would it be sensible to collect the extra data?
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Understanding Significance

Is it sensible to collect the extra data to “push” a result to significance?

No. At least, usually not.

The real result is the extent of the difference (4 pt.) This does not change in the
hypothetical example. You have to know whether this difference in ability has conse-
quences (e.g., in the policies of the school you work in, or in buying software for your
kids, or whatever).

“Statistically significant” implies that an effect probably is not due to chance, but the
effect can be very small.

This is a two-edged sword: just because an effect was not demonstrated to be
statistically significant doesn’t mean that nothing important is going on. It means you’re
not sure.
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Misuse of Significance

Garbage in, garbage out If the experiment poorly designed, or the data is poorly col-
lected, no amount of statistical sophistication can repair the situation.

No “significance hunting” Hunting among dozens of variables is likely to turn up
some extreme results. Multiple tests need to be analyzed especially if statistical
significance is to be claimed.
Looking at many variables can be useful in early stages of investigation—before
hypothesis testing.

Power of Statistical Tests Some tests are more sensitive than others, and this makes
them more useful. Relatively insensitive tests may show no significance even when
an effect is genuine.
More formally, the discriminatory power of a test is likelihood that H0 will be rejected
when Ha is true.
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Confidence Interval

An alternative view of statistical significance.

Example: you want to know how many hours per week a student in information
science works (outside of study, to earn money). You know the standard deviation for
the university is approx. 1 hr./week

• σ = 1hr./wk
• collect info from 100 people
• calculcate m = 5hr./wk
• therefore µ = 5hr., SE is 1hr./

√
100 = 0.1hr.

Sample is randomly chosen, thus subject to random error. It is one of many sam-
ples (whose theoretical distribution you know).

How certain are you of this estimate?

� � � 	 
 � 27

� �
� ���

� Intro Stats
Confidence Interval

• σ = 1hr./wk
• collect info from 100 people
• calculcate m = 5hr./wk
• therefore estimate µ ≈ 5hr., SE is 1hr./

√
100 = 0.1hr.

Since it is part of a normal distribution, we can apply the usual reasoning to obtain an
ERROR MARGIN.

For example, 68% of all elements of this distribution will fall in the interval m ± 1sd =

m ± 0.1.

95% of all elements of this distribution will fall in the interval m ± 2sd = m ± 0.2.

We are 95% confident that µ is in interval 5hr./wk. ± 0.2hr./wk. =

(4.8hr./wk., 5.2hr./wk.)
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5hr./wk. is the estimate, 0.2hr./wk. is the error margin

� � � 	 
 � 29

� �
� ���

� Intro Stats
Confidence Interval

Example: how much do students work (per week)?

• n = 100, σ = 1/wk
• calculcate m = 5hr, /wk
• therefore µ ≈ 5hr./wk., SE is 1hr./wk./

√
100 = 0.1hr./wk.

We can specify many confidence intervals.

68%conf. interval m ± 1σ 4.9 ≤ m ≤ 5.1 (4.9, 5.1)

95%conf. interval m ± 2σ 4.8 ≤ m ≤ 5.2 (4.8, 5.2)

99.7%conf. interval m ± 3σ 4.7 ≤ m ≤ 5.3 (4.7, 5.3)

Note that larger (less exact) intervals can always be specified at higher confidence
levels.
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Confidence Interval

68%conf. interval m ± 1σ 4.9 ≤ m ≤ 5.1 (4.9, 5.1)

95%conf. interval m ± 2σ 4.8 ≤ m ≤ 5.2 (4.8, 5.2)

99.7%conf. interval m ± 3σ 4.7 ≤ m ≤ 5.3 (4.7, 5.3)

To increase precision (decrease error margins) you can

• decrease σ (usually impossible);

• increase n, sample size; or

• decrease C, confidence level

Suppose you are asked to specify a 90% confidence interval?
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Confidence Interval

Suppose you are asked to specify a 90% confidence interval?

Step 1 Find the CRITICAL VALUE z∗ such that 90% of the normal distribution falls within
the interval m ± (z ∗ ×σ).

z*- z* 0

Surface = C

Surface
1- C

2
=

Surface
1- C

2
=

Tables shows this critical value to be z∗ = 1.65
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Confidence Interval

Suppose you are asked to specify a 90% confidence interval?

Step 1 Find the CRITICAL VALUE z∗ such that 90% of the normal distribution falls within
the interval m ± (z ∗ ×σ). z∗ = 1.65

Step 2 Convert this to specifications in the distribution at hand.

90%Conf.-Int. = m ± (z ∗ ×0.1hr./wk.)
= 5.0hr./wk. ± (1.65 × 0.1hr./wk.)
= 5.0hr./wk. ± 0.165hr./wk.
= (4.835hr./wk., 5.165hr./wk.)
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Variant of Question on Confidence Intervals

• If you need to place µ in an interval of 1.0 (±0.5)hr./wk with 95% confidence how
large must the sample be?

Step 1 Find z∗ such that 95% of the normal distribution falls within the interval µ ±
(z ∗ ×σ).
From tables, this is z∗ = 2

Step 2 Find the needed SE.
95%Conf.-Int. = m ± (z ∗ ×SE)

= 5.0hr./wk. ± (2 × SE)
2 × SE must be half the width of the CI (±0.5hr./wk.), so SE = 0.25hr./wk.

Step 3 Use SE and σ to determine n.
SE = σ/

√
n

0.25 = 1/
√

n√
n = 1/0.25 = 4

n = 16

� � � 	 
 � 34



� �
� ���

� Intro Stats
Confidence Interval

z*- z* 0

Surface = C

Surface
1- C

2
=

Surface
1- C

2
=

Summary

• we wish to find an interval within which a mean µ may be expected to fall with
confidence C

• we need a random sample of n ≥ 15 from a population with a known SD σ

• the method may be expected to give correct results with C probability
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Significance Tests vs. Confidence Interval

z*- z* 0

Surface = C

Surface
1- C

2
=

Surface
1- C

2
=

Hypothesis tests typically identify a 95% CI within which sample results should fall if H0

is correct.

To confirm a two-sided hypothesis at level α, a sample statistic outside the central 1−α

is needed—i.e., outside the 1 − α CONFIDENCE INTERVAL
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Hypothesis Testing

A statistical hypothesis concerns a population about which a hypothesis is made
involving some statistic

• population (all web sites)

• parameter (statistic) (rate of revisiting)

• hypothesis (ave. rate of revisiting higher when banners used)

• always about populations, not just about samples

• sampling statistic identified
– mean
– frequencies
– ...
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Identifying Hypotheses

ALTERNATIVE HYPOTHESIS (= original hypothesis) is contrasted with NULL HYPO-
THESIS — hypothesis that nothing out of the ordinary is involved.

• Ha: (ave. rate of revisiting is higher when banners used)

contrasts with NULL HYPOTHESIS:

• H0 (null hypothesis): (banners make no difference in ave. rate of revisiting)

Logically, H0 should imply ¬Ha
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Quantifying Significance

• STATISTICALLY SIGNIFICANT results are those unlikely to be due to chance.

We quantify significance by estimating how likely it is that results could be due to
chance.

Concretely: if the null hypothesis were true, how likely would the sample statistic be?

Example: If in fact banners make no difference in how often web sites are revisited,
how likely is it that a sample of 20 web sites with and without banners would show that
18% of the visitors return to the former and only 13% to the latter?

p-VALUE is the chance of sample given H0

A low p-value is evidence against H0, and for Ha
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“Significant at the 0.05 level”

We normally determine in advance which significance level is required for (probabilistic)
proof.

For example, we may agree that any result with a p-value less that 0.05 is sufficient
proof against the H0 (and therefore for the Ha) that we will be convinced.

The p-value that is determined to be sufficient for the rejection of H0 is referred to as
the α-LEVEL

We may then report the results of the experiment as “significant at the p ≤ 0.05-level”
or “significant at the 0.05-level”.
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Other Significant Levels

Sometimes, α is determined to be 0.01, sometimes 0.001

α is threshold of REGION OF REJECTION — score needed to reject H0 (and accept Ha)

—low values unlikely if H0 is true, likely if Ha true

Size of region (value of α) inversely proportional to acceptable risk (of wrongly accep-
ting Ha)
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Other Significant Levels — Example

Example: You have aphasia test, with known µ (mean), σ (standard deviation) from US,
& may wish to use it in the Netherlands

H0: µUS = µNL (same population, therefore same µ)

Ha: µUS 6= µNL (different populations, maybe due to language dependencies)

region of rejection: 0.05

—you reject H0 even though results would be consistent 5% of time

Region of rejection variable

• perhaps new test very expensive

• perhaps this aspect of diagnosis not essential
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Interpreting Results

1. Take a sample (of n aphasic patients), administer test, determine µNL.

2. Determine z score for sample of n.

z =
µNL − µUS

σ/
√

n

3. Use tables to determine chance of z score, P (z). This is the p-value, the chance of
the sample if µNL = µUS(= H0)

4. If sample statistic is in rejection region, e.g., p < 0.01, reject H0 in favor of Ha

(statistically significant)

5. If sample statistic not in rejection region, then either accept H0 or suspend judge-
ment
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Possible Errors

You could, of course, be wrong.
The selection of the sample could be unlucky (unrepresentative). Possibilities:

H0 true false

accepted correct type II error

rejected type I error correct

Type I Errors — focus of hypothesis testing
p-value – chance of a type I error
α-level: boundary of acceptable level of type I error
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Formulating Results

H0 true false
accepted correct type II error
rejected type I error correct

Note that results with p = 0.06 aren’t very different from p = 0.05, but we need to
specify a boundary. 0.05 is low because the “burden of proof” is on the alternative.

In these cases we certainly don’t feel that we’ve proven H0, only that we’ve failed to
show convincingly that it’s wrong.
We speak of “retaining H0” (“H0 handhaven”).

Type II Errors (null hypothesis accepted by false)
β —probability of type II error
1 − β —“power of statistical test” (no further mention in this course)
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Degrees of Freedom

Degrees of Freedom (dF ) — the number of ways in which data could vary (and still
yield same result).

Example: 5 data points, mean

If mean & 4 data points known, fifth is determined

Mean 6, data is 4, 5, 7, 8 and one unknown

� fifth = 6

There are four degrees of freedom in this set.

In general, with n numbers, n − 1 degrees of freedom (for the mean).

Most hypothesis-tests require that this be specified

� � � 	 
 � 46



� �
� ���

� Intro Stats

Pencil & Paper Exercise: Sampling Statistics
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