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Abstract
In this article we review Temporal Processing systems that participated in the TempEval-3 task as a basis to develop our own system, that
we also present and release. The system incorporates high level lexical semantic features, obtaining the best scores for event detection
(F1-Class 72.24) and second best result for temporal relation classification from raw text (F1 29.69) when evaluated on the TempEval-3
data. Additionally, we analyse the errors of all TempEval-3 systems for which the output is publicly available with the purpose of
finding out what are the weaknesses of current approaches. Although incorporating lexical semantics features increases the performance
of our system, the error analysis shows that systems should incorporate inference mechanisms and world knowledge, as well as having
strategies to compensate for data skewness.
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1. Introduction
Any discourse, spoken or written, contains temporally con-
nected linguistic mentions, such as events and temporal ex-
pressions (i.e. timexes). Relations between these mentions
can be meaningfully interpreted by using models of time,
which allow to connect events on a timeline (i.e. temporal
anchoring) and to understand complex sequences of events
(i.e. temporal ordering). Temporal relations (TRs) provide
such a model, and a set of properties, to account for the
connections between pairs of entities.
Temporal Processing (TP) is a task consisting in automat-
ically identifying and classifying basic entities and their
relations, such as event-event (e-e), and event-timex (e-
t). Temporally aware Natural Language Processing (NLP)
systems are crucial not only to generate timelines and sto-
rylines (Vossen et al., 2015), but also in decision sup-
port systems, summarization and textual entailment appli-
cations, question answering systems, and document archiv-
ing, among others. Since the availability of the TimeBank
corpus (Pustejovsky et al., 2003) there has been a renewed
interest in the area of TP, which has resulted in the celebra-
tion of several evaluation campaigns1 and in the creation of
corpora and tools in languages other than English. 2

This paper focuses on analysing errors of TP systems that
have participated in the TempEval-3 competition (UzZa-
man et al., 2013) in order to find out what are the main
limitations of the systems. Our study builds on the work
by Derczynski (2013), who proposes a classification of TR
errors as a result of analysing the output of systems partici-
pating in the TempEval-2 competition . However, the focus
of our analysis is different because the data of TempEval-2
is a subset of the TimeBank corpus, participating systems
produced a simplified set of TRs, and were not evaluated

1TempEval (Verhagen et al., 2007; Verhagen et al., 2010; Uz-
Zaman et al., 2013), Clinical TempEval (Bethard et al., 2016;
Bethard et al., 2017), Q-A TempEval (Llorens et al., 2015).

2For an extended list of available TimeBanks see (Caselli and
Sprugnoli, 2017).

on an end-to-end approach.
Two are the contributions of this paper: first, we review
state-of-the-art TP systems to identify their properties (i.e.
features and learning algorithm), common characteristics,
and limitations. Based on that we have developed our own
system, which we release to the public 3 4. Secondly, we
have conducted an extensive error analysis by comparing
the output of different systems, including our own, to pro-
vide a better understanding of the limitations and issues that
still need to be addressed in this task.
The remainder of the paper is structured as follows: Sec-
tion 2. explains the TP task in general and as formulated
in the TempEval-3 evaluation exercise. Section 3. reviews
TP systems that participated in the TempEval-3 competi-
tion whose output is publicly available. The results of the
error analysis are presented in Section 4. and Section 5. for
event trigger detection and temporal relation classification,
respectively. Finally, Section 6. puts forward conclusions
and future work.

2. Task Description
TP is a concatenation of 4 subtasks: identification and clas-
sification of linguistic mentions that denote events (ES); de-
tection and normalization of timexes (TE); identification of
e-e and e-t pairs (TD); and classification of valid temporal
relations according to a predefined set of values (TC).
TempEval-3 is a follow-up of two previous evaluation ex-
ercises (TempEval and TempEval-2), with the difference
that the task of TP is evaluated from an end-to-end per-
spective, i.e. systems should produce full temporally an-
notated documents starting from raw text. The TempEval-3
datasets are compliant with the TimeML Annotation Guide-
lines. In particular, an event is defined as any linguistic
mention, including verbs, nouns, adjectives and preposi-

3https://github.com/cltl/
TimeMLEventTrigger

4At the moment of writing of this abstract, we are still com-
pleting the linked repository.

https://github.com/cltl/TimeMLEventTrigger
https://github.com/cltl/TimeMLEventTrigger


tional phrases, which denotes something that happens, oc-
curs, or describes states/circumstances in which something
obtains or holds true. Each event mention is further char-
acterized by a set of 5 attributes such as: class, tense, as-
pect, polarity, and modality. Timexes are defined as lex-
ical items which denote a time, a date, a duration, or a
set (e.g. noon, yesterday, two days ago, yearly), extend-
ing previous annotation initiatives such as TIDES (Ferro
et al., 2002) and STAG (Setzer, 2001). Finally, the set
of possible TRs is based on Allen’s temporal intervals
consisting of a total of 14 possible values: BEFORE,
AFTER, INCLUDES, IS INCLUDED, BEGINS, ENDS,
BEGUN BY, ENDED BY, SIMULTANEOUS, IAFTER,
IBEFORE, DURING, DURING INV, IDENTITY. Addi-
tionally, for the TempEval-3 evaluation extra training data
were provided, automatically annotated for event, timexes,
and TRs; a new evaluation metric was used to assess the
temporal awareness of end-to-end systems; and a new test
set was used.

3. Temporal Processing Systems
In order to develop our own out-of-competition TP sys-
tem, we analyzed first the best systems from TempEval-3
that targeted either the event extraction and classification
subtask only (Task B in the TempEval-3 guidelines) or the
end-to-end temporal relation identification and classifica-
tion subtask (Task C in the TempEval-3 guidelines, which
includes Task B as well). This results in a total of 6 unique
systems (5 for event detection and classification only and 4
for the full TP).
The event detection and classification task was ad-
dressed by all systems using supervised discrete machine
learning classifiers such as Conditional Random Fields
(CRFs) (Kolya et al., 2013; Bethard, 2013), Logistic Re-
gression (Kolomiyets and Moens, 2013), and Maximum
Entropy (Chambers, 2013; Jung and Stent, 2013). Most of
the systems (4 out of 5) adopted the same learning model
also for event classification. Overall, 17 features were rep-
resented in the learning models, which can be aggregated
in 5 groups:

• Basic morpho-syntactic features (e.g. token, lemma,
stem, parts-of-speech (POSs), token’s affix and/or suf-
fix, among others);

• Syntactic features (e.g. constituency/dependency
parsing; governing verb lemma, verb chunks);

• Contextual features (e.g. context windows of token,
lemma, POS; and tokens polarity, among others);

• Semantic features, limited to semantic roles;
• Lexical semantic features, limited to WordNet synsets

and hypernyms.

For the event detection task the learning models were more
complex in terms of features used than for the classification
task, where a lower number of features is selected. Seman-
tics and lexical semantics features were used by less sys-
tems (2 systems for event detection and only 1 system for
classification).
The temporal relation detection and classification task was
addressed as a supervised multi-class classification task.

Systems used either a single classifier (Maximum En-
tropy (Chambers, 2013); CRFs (Kolya et al., 2013)) or a
combination of two classifiers (SVM and Logistic Regres-
sion (Kolomiyets and Moens, 2013); SVM and Maximum
Entropy (Bethard, 2013)).
3 of 4 systems solve the task in a two-step approach: recog-
nition of eligible temporal relations and assignment of the
temporal values. Only 1 system (Bethard, 2013) uses a sin-
gle step approach, introducing the value NORELATION
for negative examples. All systems incorporate different
classifiers for different subsets of relations (e-e, e-t, and
event-document creation time (DCT) pairs (e-dct)). Only
2 systems (Chambers, 2013; Kolya et al., 2013) incorpo-
rate classifiers for intra- and inter-sentence relations, while
the others deal only with intra-sentence relations. Finally, 2
systems (Bethard, 2013; Kolomiyets and Moens, 2013) use
a reduced set of temporal values, while the others adopted
the full 14 temporal values.
The feature set for classification of TRs is larger than for
event detection and classification, up to 29 features per sys-
tem, and scattered. There are specific features for some
sub-types of TRs (e.g. syntactic path between e-t pairs,
timex tokens, and linear order in the text, among others).
Most of the features fall into the same categories of the
event detection and classification task, although some ex-
tra features are used: tense and aspect values, order of
presentation of the events, presence of temporal preposi-
tions/adverbs, and type of timexes, which are grounded in
linguistic theories of time (Reichenbach, 1947; Comrie,
1985; Declerck, 1986). Features which account for dis-
course structure and world knowledge are either missing or
simplified (e.g. only WordNet synsets).

3.1. A New TP System
Based on our study of participating systems, we devel-
oped a new end-to-end TP system. Similarly to previous
works, we used a single learner and we split the task in
multiple subtasks. The system is based on a cascade of 7
CRF classifiers. It shares with existing systems the use of
morpho-syntactic features, contextual features ([+/-2] con-
text window, which has proven to be optimal), and seman-
tic features such as semantic roles and WordNet synsets.
To extract the features the data are processed with state-of-
the art tools, such as the Stanford CoreNLP (Manning et
al., 2014) and the NewsReader NLP pipeline (Agerri et al.,
2014). Additionally, the system uses lexical semantics fea-
tures such as VerbNet classes and FrameNet frames com-
puted from the alignments in the Predicate Matrix (Lacalle
et al., 2014). This allow to access high level lexical seman-
tic features which have a role in the identification of event
mentions and TRs.
We used the TempEval-2 test data as a development set, to
tune the features and conduct an ablation study to verify the
impact of the extended lexical semantics features. We ob-
served two things: i) the quality of the pre-processing tools
has an impact on the final results; ii) the semantic and syn-
tactic features have the biggest impact on the system’s per-
formance: using only morpho-syntactic and context win-
dow features gives an F1 of 82.1 for event detection, which
increases to 88.2 when adding lexical semantics features



only, and reaches 90.9 when lexical semantic are combined
with syntactic information.
As for the TR task, to overcome the lack of connectivity
between all possible e-e and e-t pairs, we assumed that in
the test data all possible pairs of entities are temporally con-
nected. Such a decision is inspired by the solution adopted
in the TimeBank Dense corpus (Cassidy et al., 2014). This
model has been developed to better evaluate the complete-
ness of the test data, by identifying pairs which are correct
but not annotated. Furthermore, we have used all 14 tem-
poral values, rather than simplifying the set to the most fre-
quent ones in the training data 5.
Table 1 contains the results of our TP system and of the
reviewed systems.

System F1 P R
Our system 29.69 23.86 39.29
(Bethard, 2013) 30.98 34.08 28.40
(Chambers, 2013) 27.28 31.25 24.20
(Kolya et al., 2013) 24.61 19.17 34.36
(Kolomiyets and Moens, 2013) 19.01 17.94 20.22

Table 1: Results for TempEval-3 Task C (Temporal Pro-
cessing from raw text).

Our system qualifies as the second best system on this task
(F1 29.69). The higher recall reflects two aspects: firstly,
a good performance of the system in detecting the basic
entities, especially event mentions (F1 80.3), and, secondly,
the assumption of a full temporal connection of the entities,
which tends to over-generate TRs. Breaking down these
results per type of entity pairs in a TR, our system has the
best F1 for e-e pairs (25.69), while the best score for the
other participating system is obtained by Chambers (2013)
(F1 19.01). Things are different when looking at the results
for e-t and e-dct pairs. In both cases Bethard (2013) obtains
the best scores, with an F1 of 41.41 for e-t and 24.75 for e-
dct. Our system, on the other hand, scores only 27.59 F1
for e-t, and a competitive 23.48 for e-dct.

4. Event Triggers: What is it wrong?
We analyzed the errors made by all systems presented in the
previous section for the event detection and classification
subtask. As for event detection, of the 749 gold events, 64%
are correctly detected by all systems, 10% by 5, 3.6% by 4,
4% by 3, 4.4% by 2, 4.4% by 1, and 9.4% by 0 systems.
From the events that all systems correctly detect 91.87%
are verbs, 7.08% nouns, 0.83% adjectives, and 0.20% other.
From the events that no system correctly detects 67.60%
are nouns, 18.30% are adjectives, 11.26% other, and 2.81%
prepositions. This indicates that systems are well trained
to detect events expressed by prototypical POS (i.e. verbs),
while events with less prototypical POS are more challeng-
ing. This is coherent with the statistics of the training data,
where 80.5% of events are verbs. By looking at cases in
which systems disagree, we find that more systems agree
for events with POS verb, than for events with POS noun.
In this sense we are confronted with a very standard charac-
teristic of NLP gold data sets, namely class imbalance. As

5The final version of the paper will provide more details about
the system.

in many other NLP tasks, a good system will have to be able
to deal with the sparse examples that belong to the long tail
of data distribution. From the events with POS noun that no
system detects, 3 are proper nouns. We found that these are
cases of metonymy, which would require a system to apply
inference mechanisms, as in the example 1 where Everest
is a proper noun that refers to the event ‘climbing the Ever-
est’. No system was able to make this inference.

1. He said: “[. . . ] 60 years on from Everest his achieve-
ments deserve wider recognition.”

Additionally, for all events that no system detects correctly
we checked if they occur in the training corpus. We found
that out of 71, 4 occur less than 5 times and 2 around 40
times, but with a different POS (verb, adjective and noun).
The rest do not occur in the training corpus. This suggests
that unseen events are difficult to detect using discrete mod-
els and features because systems can not generalize enough.
As for event classification, 43.95% of the examples are cor-
rectly classified by all systems, 22.12% by 5, 7.96% by 4,
5.75% by 3, 5.16% by 2, 6.19% by 1, and in 8.84% of the
cases no system finds the right solution. The events that all
systems correctly classify belong mostly to the classes OC-
CURRENCE (74.16%) and REPORTING (21.81%), which
are the most frequent classes in the training set (61.71%
and 14.36%). The distribution of classes where all sys-
tems fail is as follows: STATE (43.33%), ASPECTUAL
(23.33%), I STATE (10%), OCCURRENCE (8.33%), I
ACTION (6.66%), REPORTING (5%), and PERCEPTION
(3.33%). This indicates again that the most difficult cases
belong to low-represented classes in the training data.

5. Temporal Relations: When is it wrong?
For the error analysis of the temporal relation subtask we
look at three aspects: i) what type of relations are incor-
rectly classified by all systems; ii) what type of processing
requirements are needed to solve cases where all systems
fail; and, iii) to which extent False Positives (FP) identified
by our own system are correct.
As for the incorrectly classified relations, we observe that
all systems commit errors for e-t and e-e relations. This
indicates that anchoring to the right timex (e-t) and ordering
relations (e-t) are both complex and difficult.
With the exception of one system (Bethard, 2013), the tem-
poral values that the systems output are as skewed as in the
training data, since systems tend to predict the most fre-
quent classes. In particular, systems tend to predict the
values BEFORE, AFTER, and SIMULTANEOUS for e-
e pairs, IS INCLUDED for e-t pairs, and BEFORE, IN-
CLUDES, IS INCLUDED, and AFTER for e-dct pairs.
The errors committed by the systems can be grouped into
the 6 categories listed below.6 Excluding Error, the cate-
gories refer to the processing requirement that the system
should have fulfilled in order to correctly identify and clas-
sify a TR.

• Iconicity: the system should interpret the linear order
of presentation of the entities;

64 classes: Iconicity, Inference, Signaled and World Knowl-
edge have been proposed in Derczynski (2013).



• Signaled: the system needs to process an explicit tem-
poral signal (e.g. before, since, and similar) that con-
nects the elements in the pair;

• Inference: the relation can be identified and classi-
fied through inference via other existing relations (e.g.
two events linked to two different timexes can be order
by means of the comparison of the values of timexes
only);

• Grammar: the system needs to infer the relation via
grammatical information (e.g. tense and aspect val-
ues), and/or syntactic dependencies between the ele-
ments in a pair;

• World Knowledge: the relation can be classified by
applying knowledge about event semantics, discourse
structure, factuality profiling of the events, and exter-
nal information concerning commonsense knowledge;

• Error: the gold temporal relation is either wrong or in
dispute.

We summarize our findings in Table 2. The error analysis
is based on all cases of e-t and e-dct pairs and is limited to
50% of the e-e pairs.

Processing [e-dct] [e-t] [e-e]
requirement
Iconicity 0 (0%) 0 (0%) 4 (4.49%)
Signaled 0 (0%) 6 (31.57%) 9 (10.11%)
Inference 6 (30%) 5 (26.31%) 22 (24.71%)
Grammar 3 (15%) 2 (10.52%) 21 (23.59%)
World Knowledge 10 (50%) 6 (31.57%) 32 (35.95%)
Error 1 (5%) 0 (0%) 1 (1.12%)

Table 2: TLINK error classification of the cases where all
systems fail.

With the exception of the e-dct pairs, world knowledge
plays a less prominent role than expected. The classifica-
tion of both e-t and e-e pairs would improve by training the
systems with more densely annotated data such as Time-
Bank Dense. At the same time, the results would improve
if inference mechanisms were applied to keep track of the
TRs in which events are involved: around 25% of errors in
these relations could be avoided by means of inferences.
Grammatical information plays an important role for e-e
relations. A subset of errors in the Grammar class could
be avoided by computing the contextual values of the tense
and aspect rather than using the values of the their super-
ficial form (e.g. a superficial present tense which is used
to described past events should have value PAST for tense
rather then PRESENT). These cases are hard to solve be-
cause in TimeML only the superficial values of tense and
aspect are annotated. We also looked at whether it is easier
to identify and classify e-e pairs that have different tense
and aspect values. We observe that this is not the case as
the error rate in e-e pairs with the same tense and aspect val-
ues (40%) does not differ from the error rate of pairs with
different values (39%).
Additional errors are found in relations between events
across sentences. Overall, they represent 26.96% of the an-
alyzed data. Interestingly, the correct processing of inter-

sentential e-e pairs cannot be related to a particular pro-
cessing requirement. Another cause of errors is unproper
processing of pairs where one of the elements is a reporting
verb. These cases require careful processing of the previous
linguistic context in order to identify the correct relation be-
tween the events.
What concerns the errors of our system, we have measured
the impact of the semantic features by removing the lexical
semantic features. On the test data, the scores drop 3.63
points of temporal awareness. 7 As for the False Positives
(FP), our system produces 555 FP for e-dct relations; 301
for e-t, and 571 for e-e. We manually checked 15% of the
test files to establish if the temporal links predicted by the
system are correct. Out of 81 e-dct links, 74 of them are
valid, which results in 48 (64.86%) links correctly classi-
fied. The same applies to the e-e pairs, where out of 54 sys-
tem output links, 44 are valid with 26 (59.09%) correctly
classified. As for e-t pairs, we have identified 40 possible
links, with 33 valid links. Contrary to the other cases, only
9 (27.27%) e-t links are correct due to an over-generation
of the IS INCLUDED value.
This preliminary error analysis 8 has shown that wrong re-
sults for TRs are mainly dependent on: i.) inference, ii.)
contextual interpretation of grammatical devices which en-
code TRs (i.e. tense and aspect), and iii.) lack of world
knowledge. Full connectivity among entity pairs and more
data can benefit the task, but they will not solve all the is-
sues identified.

6. Conclusions and Future Work

In this paper we have focused on TP in the framework of
TempEval-3. We have reviewed the 5 top performing sys-
tems to gain insights into their architectures and features.
We found that no system has used rich lexical semantic in-
formation as a means to encode world knowledge informa-
tion. We developed a new TP system that, by incorporating
rich lexical semantic information, outperforms all systems
in Task B (F1-Class 72.24) and qualifies second in Task C
(F1 29.69). Additionally, we performed an error analysis
by comparing the output of all the systems and detecting
the easy and difficult cases for Tasks B and C.
The results of the error analysis can be summarized as fol-
lows: i) training data are skewed and unbalanced thus mak-
ing it hard for current machine learning methods to deal
with rare and low frequent cases; ii) inference phenomena
and world knowledge have a prominent role in resolving
complex semantic tasks such as TP.
In the final version of the paper we will elaborate on this
and propose future directions on how to improve the cur-
rent systems both by using distributed features (e.g. word
embeddings) and different learning algorithms for the dif-
ferent tasks (e.g. Bi-LSTM for temporal classification).

7The official scorer computes the temporal awareness includ-
ing inferred temporal link, but it does not output them.

8In the final version of the paper we will provide more details
and examples.
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