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A B S T R A C T

Aspect Based sentiment analysis (ABSA) is concerned with mining opinions
from text about specific entities and their aspects. Nowadays, people easily
spill their opinions on the internet about anything. In this thesis, we focused
on customer reviews of smartphones to do ABSA. This could be done by
using supervised machine learning, however annotating is very time con-
suming. A lot of web shops summarise reviews by listing positive and
negative points above the reviews. So in fact, the annotation has already
been done. In this thesis, we researched whether distant supervised ma-
chine learning can achieve comparable results as with supervised machine
learning. As data, 26,565 customer reviews of smartphones from the web
site pdashop.nl were used. This data consisted of 94,307 distant supervised
annotated points. Twelve categories were defined based on the aspects of a
smartphone. For each category a word list was created to match sentences
of a review to a category. Using a Support Vector Machine we created for
each category one model. As features we used POS tags, different types of
N-grams, word frequencies and TF-IDF-scores. 887 sentences annotated by
two annotators, divided over the twelve categories were used to evaluate
the system. Dependent on the category, achieved accuracies were between
0.22 and 0.72. In this research we didn’t achieve results comparable to su-
pervised machine learning (0.79). Highly skewed data to positive making
it hard to detect negative sentiments and not having the ability to train on
neutral sentiments were the main causes for low accuracies.
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1 I N T R O D U C T I O N

The last couple of years the world wide web has expanded very fast. With
this growth, the available content has increased dramatically. Shopping on
the internet has increased in popularity, so much physical shops struggle in
their existence. Slowly physical shops are disappearing and are replaced by
web shops on the internet. Advice by expert shop personal, although maybe
subjective, is replaced by readable content like blogs and product reviews.
A lot of the web shops have integrated a reviewing system on their website.
Doing this, giving their customers the option to advise each other. Reviews
by customers, are probably more objective, although those reviewers are not
always experts about the product. The fact that everybody can post a review
makes that their is a lot of product information available. However, the fact
that anybody can review a product and the fact companies are stimulating
this do, might causes a reduction of the quality of those reviews. So there
is a lot of content, but often without any quick filtering option. A potential
customer got to read a lot of reviews to form his opinion about the product.
Some web shops tackled this problem by listing a summary of positive and
negative points per product or review. This makes it much easier to see
whether the review is worth reading.

Aspect Based sentiment analysis (ABSA) is mining opinions from text
about specific entities and their aspects. A way to do this is using super-
vised machine learning. Supervised machine learning requires annotated
data to train on. However, annotating is a time consuming task and possi-
bly it isn’t necessary. After all, on some web sites the data has already been
annotated by their users. An example of such web sites, having reviews
annotated by their users, are those from CoolBlue.nl.

Having the possibility to use distant supervised annotated data raised
the question what the quality would be compared to the more common ap-
proach using supervised annotated data.

Can we achieve the comparable results using distant supervised ma-
chine learning as by using supervised machine learning (79,34%) for as-
pect based sentiment analysis?

This paper is structured as follows: In chapter 2 we discuss the back-
ground. Chapter 3 will describe the data collection and annotation. This is
followed by an overview of the used methods in chapter 4. The achieved
results are presented in chapter 5. In chapter 6 the results are discussed.
Chapter 7 contains the conclusion and suggestions for further research. In
the appendices the most important code snippets are presented.
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2 B A C KG R O U N D

Aspect Based sentiment analysis (ABSA) is mining opinions from text about
specific entities and their aspects. This has been done in different domains
like consumer electronics, restaurants and movies (Pontiki et al., 2015). The
first important steps of ABSA are extracting the aspects from the content
(Mukherjee and Liu, 2012). Within this first task, there are two important
subtasks. The first subtask is to extract the aspects and the second task is to
categorise the aspects in aspect categories. However categorising aspects it
not always easy. An aspect could fit into multiple categories depended on
the context (Zhai et al., 2011). Task 12 during the SemEval 2015 campaign
(Pontiki et al., 2015) consisted of 4 subtasks whereof one of the tasks was
extracting entities as an addition to only aspects.

A subtasks of (Pontiki et al., 2015) was extracting the sentiment polarity
for two domains, laptops and restaurants. This has been done by multiple
teams for both domains. In the laptop domain the highest accuracy was
achieved, 79.34%. An accuracy of 78.69% was the highest in the restaurant
domain. Both highest scores were reached using a Maximum Entropy (Max-
Ent) classifier with features based on N-grams, POS tagging, lemmatization,
negation words an available sentiment lexica. A SVM model with N-grams,
PMI-scores, POS tagging, parse trees, negation words and scores based on
7 sentiment lexica as features ended on the second place with a score of
78.29% and 78.10% for the laptop and restaurant domain.

In 2015, the teams scored slightly better in the domain of laptops com-
pared to the restaurants domain, probably due the fact the training data
was skewed to positive were the test data wasn’t. However in 2014 the
laptop domain proved to be harder (Pontiki et al., 2014). A big difference
between the domains is that people tend to write about restaurants with
expressing more sentiment compared to the laptop domain. In the laptop
domain people often mention features instead of expressing a clear senti-
ment. In this research we’ll use smartphone reviews because people seem
to have a stronger opinion about smartphones compared to laptops. When
we compared the number of reviews (900) of the 12 best sold laptops on
laptopshop.nl with the number of reviews (3.507) of the 12 best sold smart-
phones of pdashop.nl, we found 2.607 more reviews for smartphones.

Aspect based sentiment analysis consists of two main task: entity ex-
traction and sentiment extraction. In this research we want to explore the
possibilities by extracting the sentiment using distant supervised sentiment
analysis (Go et al., 2009). We won’t focus on entity extraction, we’ll use a
list of categories and predefined words to extract entities.
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3 DATA A N D M AT E R I A L

3.1 collection
The data that is used are Dutch reviews from the web site pdashop.nl, a
web shop selling smartphones. On their web site, Pdashop.nl is currently
selling 276 different phones from 21 brands. On average, each phone has
been reviewed 96 times. In total, pdashop.nl has 26,565 customer reviews.
All reviews have a title, content, positive and negative points, whether the
reviewer recommends the product, rating, votes of review readers whether
the review is useful or useless and a product id. By using a web crawler
we collected all 26,565 customer reviews. In total, those reviews contained
94,307 listed points divided in positive and negative aspects about the prod-
uct. Out of the 94,307 points, 68,446 are positive and 25,861 are negative.

An example of an review is shown in figure 1. Positive points are listed
under Pluspunten, negative points are listed under Minpunten.

Figure 1: An example of a review on pdashop.nl.

All data is collected by crawling pdashop.nl using the framework Scrapy.
This is a framework for crawling web sites and extracting structured data
based on Python. The collected data was stored in an SQLite database.

3



3.2 annotation 4

3.2 annotation

3.2.1 Categories and word lists

In this thesis, we focussed on sentiment analysis and not on entity extraction.
Therefore, we created a predefined set of 12 categories. For each category
we defined a list of words matching this category. We created those lists by
tokenizing all collected content of the points into unigrams. After tokeniz-
ing the data we did have 15,395 unique words. We reduced the number of
unique words to 1169 by using a Part-of-Speech tagger and selecting only
the nouns. An annotator reviewed all unique words and categorised them in
one of the following 12 categories: Accu, Beveiliging, Camera, Connectiviteit,
CPU, Design, Geheugen, Geluid, Geheugen, Opslag, Overig, Prijs, Scherm and
Software. The Overig category was added for words that are not relevant to
any of the other categories. The words in the Overig category aren’t used in
this research.

In Table 1, an overview of the number of words in each category is
presented. Except from Overig, the category Design contains the most words
followed by Software and Accu. The categories Geheugen and CPU have the
least number of words.

Table 1: Categories and number of words per category.

Category Number of words
Accu / Battery 81

Beveiliging / Security 48

Camera / Camera 60

Connectiviteit / Connectivity 53

CPU / CPU 15

Design / Design 160

Geheugen / Memory 12

Geluid / Audio 69

Opslag / Storage 31

Overig / Other 466

Prijs / Price 25

Scherm / Display 52

Software / Software 97

3.2.2 Distant supervised annotation

All the reviews include listed positive and negative points that summarise
the review. The created word lists are used to label one or multiple cate-
gories to the list item. Since those points are given an positive or negative
sentiment by the review writers, the sentiment is already determined (Go
et al., 2009).

The second step was using those points for distant supervised annotat-
ing the content of the review. The content of the review was tokenized
into sentences using the NLTK’s sentence tokenizer. While iterating over
the sentences we searched for words in the review content which matched
the words in the categories obtained from the listed points. When there
was a match found, the sentence was labeled either positive or negative for
the specific category. For example, a review with a positive point "Helder



3.2 annotation 5

scherm" having in the review content the sentence: "De display is erg mooi en
heeft helder beeld" would be labeled as positive for the subject category Dis-
play. Since there are not neutral listed points, all sentences with a category
match are labeled either positive or negative. We weren’t able to train on a
neutral class. Sentences, matching more then one different category, were
labeled multiple times, possibly with a different sentiment. For example:
"Het scherm is een amoled scherm en de camera is uitstekend door de snelle focus
en de heldere foto’s.", would be labeled positive for the categories Scherm and
Camera.

In Table 2, an overview of the number of positive and negative sentences
in the trainings data set is presented. Each row represents a category with in
the columns the category, number of positive sentences, number of negative
sentences and total number of sentences.

Table 2: Number of sentences per category in training data.

Category Positive Negative Total
Accu / Battery 4977 1879 6856

Beveiliging / Security 543 209 752

Camera / Camera 11223 2512 13735

Connectiviteit / Connectivity 324 442 766

CPU / CPU 213 8 221

Design / Design 4948 3322 8270

Geheugen / Memory 310 334 644

Geluid / Audio 600 563 1163

Opslag / Storage 318 368 686

Prijs / Price 2378 1046 3424

Scherm / Display 6953 1585 8538

Software / Software 3420 2231 5651

Total 36207 14499 50706

3.2.3 Gold standard

To create the gold standard, test and development data, we used sentences
from the review content. We picked a review randomly and sentence to-
kenized the content of this review. We checked every sentence whether it
contains one of the words defined in the word categories. If the sentence
fitted a category we labeled it as development or test data. We repeated this
process until we did select at least 3000 sentences. As a result we ended up
with 3004 sentences.

Five annotators, named as JB, MT, AB, TG, IP, did annotate the data. JB
refers to the author of this thesis, MT has a bachelor linguists and the other
annotators completed a high education in an other field. The annotators
did see a sentence and the category the sentence was selected for. Using a
web interface the annotators labelled the sentence for the given category as
positive, negative or neutral. JB and MT annotated most of the data, 2534

sentences. The other 470 sentences were annotated by the other three anno-
tator. Because of low kappa scores, < 0.5, we only used the data annotated
by the JB and MT. The calculated kappa was 0.77 based on 34 sentences.
Although it is calculated with a small amount of sentences, we consider this
kappa as acceptable. After removing the data of the other annotators, we
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further split the data into development (1647, 65%) and test (887, 35%) data.

In Table 3, an overview of the number of positive and negative sentences
in the development set is presented. Each row represents a category. The
columns show the category, the number of positive sentences, the number
of negative sentences, the number of neutral sentences and the total number
of sentences.

Table 3: Number of sentence per category in development data.

Category Positive Negative Neutral Total
Accu / Battery 161 58 39 258

Beveiliging / Security 21 4 4 29

Camera / Camera 164 32 50 246

Connectiviteit / Connectivity 22 12 26 60

CPU / CPU 10 4 3 17

Design / Design 149 49 65 263

Geheugen / Memory 22 9 9 40

Geluid / Audio 28 10 17 55

Opslag / Storage 19 20 15 54

Prijs / Price 77 29 25 131

Scherm / Scherm 136 34 57 227

Software / Software 140 31 96 267

Total 949 292 406 1647

In Table 4, an overview of the number of positive and negative sentences
in the test set is presented. Each row represents a category. The columns
show the category, the number of positive sentences, the number of neg-
ative sentences, the number of neutral sentences and the total number of
sentences.

Table 4: Number of sentence per category in test data.

Category Positive Negative Neutral Total
Accu / Battery 72 26 19 117

Beveiliging / Security 16 2 4 22

Camera / Camera 106 11 13 130

Connectiviteit / Connectivity 16 15 9 40

CPU / CPU 4 2 1 7

Design / Design 91 18 41 150

Geheugen / Memory 7 3 10 20

Geluid / Audio 15 13 4 32

Opslag / Storage 8 5 9 22

Prijs / Price 37 11 12 60

Scherm / Display 76 19 28 123

Software / Software 84 30 50 164

Total 532 155 200 887



4 M E T H O D

4.1 scikit-learn
Scikit-learn is a open source Python platform build on NumPy, SciPy, and
matplotlib. Scikit-learn can be used for data mining and analysing tasks. It
supports most machine learning algorithms, both supervised and unsuper-
vised. Evaluation calculations and plotting are easily preformed.

4.1.1 Supported Vector Machine

The Support Vector Machine (SVM) with a lineair kernel of Scikit-learn uses
the LIBSVM library (Chang and Lin, 2011). The LIBSVM is normally used
in two steps. First trainings data is used to create a predicting model. The
model uses vectorized data and places it in a vector space. A hyperplane
is calculated between the data points. The hyperplane with the largest dis-
tance between the different classes is used. Secondly the the created model,
based on the trainings data, is used to predict information. It is also possible
to get the probability estimates for output information.

4.1.2 Vectorizers

Scikit-learn has different classes to vectorize text data into a matrix. The
Countvectorizer converts text data to a matrix based on token’s frequency
in the text data. The TfidfVectorizer converts the text to a matrix of TF-IDF
features. The TF-IDF gives a reflection of the importance of token in to doc-
ument in a corpus. Both vectorizers can apply N-grams while vectorizing
the data.

4.2 nltk
NLTK is Python platform to process human natural language. It contains
different libraries for classification, tokenization, stemming, tagging, pars-
ing, and semantic reasoning and wrappers for industrial-strength NLP li-
braries. NLTK has over 50 corpora and lexical resources such as WordNet.

4.2.1 NLTK POStag

NLTK uses by default the Standard treebank POS tagger. This tagger is
trained on the Penn Treebank. This means the POS tagger is trained on
English. Still, when using Dutch input, it returns POS tags but with a lower
accuracy.

7



4.3 machine learning 8

4.2.2 Dutch Stemmer

NLTK supports Dutch stemming with the snowball DutchStemmer. When
stemming, the mophological affix is removed from the word. The stem of
the word is the result of stemming.

4.3 machine learning
Although the MaxEnt classifier achieved the highest accuracy during the
(Pontiki et al., 2015), in this research we used a Support Vector Machine
(SVM) with a lineair kernel. We did this, because SVM is easy to imple-
ment using Python Scikit-learn and the achieved results didn’t differ a lot
compared to MaxEnt in the reviewed papers. We created for each of the
twelve different categories (Table 1) a SVM model based on the distant su-
pervised annotated data (table 2). We did this, by training the model with
the sentences that matches one of the word (Section 3.2.1) in the category.
The possible labels were positive or negative. We selected the sentiment by
using listed positive and negative points of the review. During development
we used the gold annotated development data to evaluate the system (Table
3). After the development we evaluated the system with the gold annotated
test data (Table 4).

4.4 features
To add features we used the pipeline in Scikit-learn. By using the NLTK
POS-tagger we appended the POS-tags as features. The snowball Dutch-
Stemmer in NLTK was used to stem the words of the sentence. Stop words
were removed from the sentence. Word frequencies were added as feature
by using the countvectorizer. Lastly TF-IDF scores were used as feature, cal-
culated by using the tfidfvectorizer. Both vectorizers used 1-, 2-, 3-, 4-grams.

4.5 detecting neutral sentiments
Because the crawled data from pdashop.nl only has positive or negative
points, we only could train on positive and negative sentiments. This re-
sulted in a model that is not able to detect neutral sentiments. Even though
neutral was used in manual annotation and is quite a frequent category (Ta-
ble 4). Therefore, we added neutral sentiments by overriding manually the
predicted class based on probablitiy score. To achieve this, we set a thresh-
old fixed at 0.65. While iterating over the probability estimates we checked
whether the probability was in between 0.35 and 0.65. In those cases, we
manually changed the predicted sentiment to neutral.

4.6 evaluation
Having manually labelled data makes it possible not only to evaluate our
system, but also to evaluate the quality of data that we acquired automati-
cally.



4.6 evaluation 9

4.6.1 Data

Accuracy, recall and F1-score are calculated for the positive, negative and
neutral labels to evaluate the gold annotated data with the trainings data.
Those scores are calculated by comparing the labels for a sentence annotated
by the annotators with the annotated labels based on the listed positive and
negative points.

4.6.2 SVM Models

To evaluate the created SVM models we calculated for each category accura-
cies, recall scores and F1-scores. This is done by comparing the labels of the
gold annotated data with the predicated labels of the SVM model. The pre-
cision, recall and F1-score is calculated for the positive, negative and neutral
labels. Averages of those scores are also reported. The system is compared
to a baseline of 59.98% for the positive labels (Table 4).



5 R E S U LT S

In Table 5-16, an overview of the achieved results per category is presented.
The results are achieved by twelve models, for each category one, trained on
the silver data (Table 2) and evaluated on the gold test data (Table 4). In each
table, the rows present the scores for positive, negative, neutral sentiments.
The last row is presenting the average scores. The first column presents the
precision, the second column the recall and the third column the F1-score.
In the last column the number of sentences in the test data set is presented.

5.1 accuracy
In all categories the highest accuracies are achieved for the positive label.
Those accuracies were between 1.00 and 0.20. The category Connectiviteit
did have the highest accuracy with 1.00 followed by Beveiliging (0.87, Table
6) and Camera (0.81, Table 7). The categories Geheugen and Opslag did have
the lowest accuracies with scores of 0.27 and 0.20 (Table 11, 13).

The negative label, presented in the second row of each table, did have
quite lower accuracies compared to the positive label. Accuracies between
0.90 and 0 were achieved. The category Scherm did have the highest accu-
racy (0.90, Table 15) for the negative label followed by the category Accu
(0.88, Table 5). The categories with the lowest accuracy, all with a accuracy
of 0, were Beveiliging, Camera, Geheugen and CPU (Table 6, 7, 11, 9).

The neutral label did have accuracies between 0 and 0.43. In none of
the categories the accuracy of the neutral label was higher then the positive
label. Only the categories Beveiliging, Design and Geheugen did have a higher
score for the neutral then negative sentiment. The categories Beveiliging and
Prijs did achieve the highest accuracies with a accuracy of 0.43 (Table 6) and
0.40 (Table 14). The lowest accuracies for the neutral label were found for
Camera, CPU and Scherm. All of them with an accuracy of 0.

The average accuracies are between 0.22 and 0.72. The best accuracies
were found for the categories Geluid (0.72, Table 12), Beveiliging (0.72, Table
6). The categories Geheugen and Opslag did have the lowest accuracies, 0.22

(Table 11) and 0.29 (Table 13).

5.2 f1-scores
F1-scores for the positive label did vary between 0.13 and 0.86. The highest
F1-score for the positive label was found in the category Camera (0.86, Table
7). The categories Beveiliging (0.84), Accu (0.80) and Geluid (0.80) did also
have high F1-scores.

10



5.2 f1-scores 11

The negative label did have a F1-scores in the range of 0 to 0.64. The
highest F1-scores are achieved in the categories Geluid (0.64, Table 12) and
Scherm (0.62) (Table 15). Lowest scores were found in the categories having
0 as accuracy for the negative label, Beveiliging, Camera, Geheugen and CPU.

F1-scores between 0 and 0.55 were achieved. In the most categories,
the neutral sentiment did have an F1-score lower then the positive F1-score.
The categories Opslag and Prijs are the exception. The highest scores are
achieved in the category Beveiliging (0.55, Table 6) and Software (0.40, Ta-
ble 16). Lowest F1-scores were found for the categories Camera, CPU and
Scherm, having an accuracy and F1-score of 0 for the neutral label.

The average F1-scores did vary between 0.71 and 0.23. Beveiliging achieved
the highest F1-score with 0.71, followed by Camera (0.70). The lowest, aver-
age F1-score of 0.23, was achieved by Geheugen (Table 11)

Table 5: Results Accu.

- Precision recall F1-score support
Positive 0.71 0.90 0.80 72

Negative 0.88 0.27 0.41 26

Neutral 0.22 0.21 0.22 19

avg / total 0.67 0.65 0.62 117

Table 6: Results Beveiliging.

- Precision recall F1-score support
Positive 0.87 0.81 0.84 16

Negative 0.00 0.00 0.00 2

Neutral 0.43 0.75 0.55 4

avg / total 0.71 0.73 0.71 22

Table 7: Results Camera.

- Precision recall F1-score support
Positive 0.81 0.92 0.86 106

Negative 0.00 0.00 0.00 11

Neutral 0.00 0.00 0.00 13

avg / total 0.66 0.75 0.70 130

Table 8: Results Connectiviteit.

- Precision recall F1-score support
Positive 1.00 0.31 0.48 16

Negative 0.50 0.40 0.44 15

Neutral 0.22 0.56 0.31 9

avg / total 0.64 0.40 0.43 40
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Table 9: Results CPU.

- Precision recall F1-score support
Positive 0.57 1.00 0.73 4

Negative 0.00 0.00 0.00 2

Neutral 0.00 0.00 0.00 1

avg / total 0.33 0.57 0.42 7

Table 10: Results Design.

- Precision recall F1-score support
Positive 0.66 0.59 0.62 91

Negative 0.15 0.22 0.18 18

Neutral 0.34 0.34 0.34 41

avg / total 0.51 0.48 0.49 150

Table 11: Results Geheugen.

- Precision recall F1-score support
Positive 0.27 0.43 0.33 7

Negative 0.00 0.00 0.00 3

Neutral 0.25 0.20 0.22 10

avg / total 0.22 0.25 0.23 20

Table 12: Results Geluid.

- Precision recall F1-score support
Positive 0.80 0.80 0.80 15

Negative 0.78 0.54 0.64 13

Neutral 0.25 0.50 0.33 4

avg / total 0.72 0.66 0.68 32

Table 13: Results Opslag.

- Precision recall F1-score support
Positive 0.20 0.12 0.15 8

Negative 0.38 0.60 0.46 5

Neutral 0.33 0.33 0.33 9

avg / total 0.29 0.32 0.30 22

Table 14: Results Prijs.

- Precision recall F1-score support
Positive 0.65 0.89 0.75 37

Negative 0.25 0.09 0.13 11

Neutral 0.40 0.17 0.24 12

avg / total 0.52 0.60 0.53 60
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Table 15: Results Scherm.

- Precision recall F1-score support
Positive 0.66 0.97 0.79 76

Negative 0.90 0.47 0.62 19

Neutral 0.00 0.00 0.00 28

avg / total 0.55 0.67 0.58 123

Table 16: Results Software.

- Precision recall F1-score support
Positive 0.72 0.61 0.66 84

Neutral 0.36 0.44 0.40 50

Negative 0.31 0.33 0.32 30

avg / total 0.54 0.51 0.52 164

5.3 evaluation silver vs gold data
In Table 17, an overview of the comparison between the gold annotated
data, development and test, and the distant supervised annotated is pre-
sented. The positive sentiment has a precision of 0.66 with a F1-score of
0.72, the negative sentiment has a precision of 0.35 with an F1-score of 0.46.
The neutral class scores 0 on all scores.

Table 17: Evaluation supervised- and distant supervised annotated data.

- Precision recall F1-score support
Positive 0.66 0.79 0.72 1191

Negative 0.35 0.67 0.46 383

Neutral 0.00 0.00 0.00 572

avg / total 0.43 0.56 0.48 2146



6 D I S C U S S I O N

In this research, we tried to achieve comparable accuracies using distant
supervised training instead of supervised training. The achieved accuracy
scores are between 0.22 and 0.72 with F1-scores between 0.23 and 0.71.

The in most cases relative high accuracies for the positive labels can be
explained due the fact the data is highly skewed to positive. The silver train-
ing data consisted of 71.40% positive sentences (Table 2). With a baseline of
59.98% for positive in the gold annotated test data (Table 4), higher accura-
cies can be expected.

Although we expected that people would have a strong opinion about
there newly bought smartphone, quite a large part of the test data consisted
of neutral sentences. It seemed that a lot of people write about aspects of
the phone without expressing a clear positive or negative opinion about it.
Instead, they just mention the the aspects. We can see this in the gold anno-
tated data, having a lot of neutral labels (22%).

Having a lot of neutral sentences about the aspects is probably one of
the main causes of the low accuracies. Using distant supervised learning
we couldn’t train on neutral sentiments because they are not listed above
the review. We tried to solve this problem by adding a threshold of 0.65. Al-
though this made it possible to detect neutral sentiments, it wasn’t enough
to increase the total accuracy drastically.

A comparable problem happened with the negative sentiments. We can
see that the data is highly skewed to positive. This made it very hard for
the model to predict negative sentences. We think that people that buy a
phone, they really like and know what they are buying based on reviews.
This makes it less likely that customers will write about negative aspects.
This results in mainly positive reviews about a product.

In Table 17 we can confirm the low quality of the trainings data. With
an average accuracy of 0.43 it’s not possible to create an accurate model.
The reduction of accuracy is caused by lack of neutral sentences to train on.
However, it is also caused by a difference between the sentiment of review
content and the listed points. A neutral expression in the review content
could have been annotated as positive or negative when it’s listed in the
points. Hereby, the model has neutral sentences labeled as positive and neg-
ative making it hard to predict the right class.

A second problem in this research was the amount of test data. The
initial idea was to create one model that would return a category and an
sentiment. Since creating such a model was not possible, we created for ev-
ery category a model. With the idea having one model, we annotated 3004

sentences whereof less then 1000 sentences as test data. However, we cre-
ated multiple models, so the test data was split into 12 small parts. Ideally,

14
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we should have at least 1000 test sentences for each category to do a good
evaluation. Especially the categories Beveiliging, CPU, Geheugen and Opslag
did have too less data.



7 C O N C L U S I O N

In this research we asked the question whether it was possible to achieve
the same accuracies using distant supervised machine learning compared
to supervised machine learning. After this research, we can’t confirm this
is possible. In our references, the best achieved accuracy was 79.34%. The
achieved accuracies in this research are between 0.22 and 0.72 dependent on
the topic.

The low achieved accuracy- and F1-scores we dedicate to low quality
of distant supervised annotation. A second important factor is the lack of
the ability to train on neutral labels. In a further research we would advise
to choose a complete different domain for distant supervised learning with
less neutral data. We would suggest something like book, movie or restau-
rant reviews. We think that people will write more explicit in these domains
because they are for one time use. This will probably result in less neutral
data and possibly in better results.

16



B I B L I O G R A P H Y

Chang, C.-C. and C.-J. Lin (2011). Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3),
27.

Go, A., R. Bhayani, and L. Huang (2009). Twitter sentiment classification
using distant supervision. CS224N Project Report, Stanford 1, 12.

Mukherjee, A. and B. Liu (2012). Aspect extraction through semi-supervised
modeling. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1, pp. 339–348. Association
for Computational Linguistics.

Pontiki, M., D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androut-
sopoulos (2015). Semeval-2015 task 12: Aspect based sentiment analysis.
In Proceedings of the 9th International Workshop on Semantic Evaluation (Se-
mEval 2015), Association for Computational Linguistics, Denver, Colorado, pp.
486–495.

Pontiki, M., D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopou-
los, and S. Manandhar (2014). Semeval-2014 task 4: Aspect based senti-
ment analysis. In Proceedings of the 8th international workshop on semantic
evaluation (SemEval 2014), pp. 27–35.

Zhai, Z., B. Liu, H. Xu, and P. Jia (2011). Constrained lda for grouping
product features in opinion mining. In Advances in knowledge discovery and
data mining, pp. 448–459. Springer.

17



Appendices

18



A P DA S H O P. N L C R A W L E R

1 from scrapy.spiders import Spider
2 from scrapy.selector import Selector
3 from scrapy import Request
4 from scriptie_crawler.items import ProductItem, ReviewItem,

ReviewPointItem
5

6 import re
7

8 class PDAShopSpider(Spider):
9 name = "pdashop"

10 allowed_domains = ["pdashop.nl"]
11 start_urls = [
12 "http://www.pdashop.nl/category/4214/smartphones.html?items=48",
13 ]
14

15 def parse(self, response):
16

17 sel = Selector(response)
18

19 for href in
sel.xpath(’//a[@class="product-list-item--title-link"]/@href’):

20 url = response.urljoin(href.extract())
21

22 yield Request(url, callback=self.parse_as_product)
23

24 # next page
25 next_product_list = response
26 .urljoin(sel.xpath(’//a[@class="pagination next

secondary"]/@href’)
27 .extract_first())
28 yield Request(next_product_list)
29

30 def parse_as_product(self, response):
31

32 sel = Selector(response)
33

34 p = ProductItem()
35 p["product_id"] =

sel.xpath(’//*[@id="js-product-scope"]/@data-product-id’)
36 .extract_first()
37 p["url"] = response.url.strip()
38 p["name"] =

sel.xpath(’//*[@id="js-product-scope"]/div[2]/div/h1/span/text()’)
39 .extract_first().strip()
40 product = p.save()
41

42 reviews_url = response
43 .urljoin(sel.xpath(’//a[@class="rating-summary--reviews-link"]/@href’)
44 .extract_first())
45

46 #go to review page
47 request = Request(reviews_url, callback=self.parse_reviews)

19
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48 request.meta["product"] = product
49

50 yield request
51

52 def parse_reviews(self, response):
53

54 product = response.meta["product"]
55

56 sel = Selector(response)
57 for review_url in

sel.xpath(’//div[@class="reviewContent"]/h3/a/@href’).extract():
58 request = Request(response.urljoin(review_url),

callback=self.parse_review)
59 request.meta["product"] = product
60 yield request
61

62 more_reviews_url =
response.urljoin(sel.xpath(’//a[@class="pagination next
secondary"]/@href’)

63 .extract_first())
64 request = Request(more_reviews_url, callback=self.parse_reviews)
65 request.meta["product"] = product
66 yield request
67

68 def parse_review(self, response):
69

70 product = response.meta["product"]
71 sel = Selector(response)
72

73 r = ReviewItem()
74 r["url"] = response.url.strip()
75 r["review_id"] = re.findall(r’\d+’, response.url)[1]
76 r["title"] =

sel.xpath(’//*[@id="layout_content"]/div/div/article/div[1]/h3/text()’)
77 .extract_first().strip().encode(’utf-8’)
78 r["content"] = ""
79 for content in

sel.xpath(’//div[@class="reviewText"]/text()’).extract():
80 r["content"] += content.strip().encode(’utf-8’) + "\n"
81 recommendation =

sel.xpath(’//*[@id="layout_content"]/div/div/article/div[1]/div[3]/span/text()’)
82 .extract_first()
83 if recommendation != None:
84 if recommendation.encode(’utf-8’) == "Ik raad dit product

aan":
85 r["recommended"] = True
86 r["usefull"] =

sel.xpath(’//*[@id="layout_content"]/div/div/article/div[2]/form/strong[1]/text()’)
87 .extract_first().encode(’utf-8’)
88 r["unusefull"] =

sel.xpath(’//*[@id="layout_content"]/div/div/article/div[2]/form/strong[2]/text()’)
89 .extract_first().encode(’utf-8’)
90 r["rating"] = sel.xpath(’//meter/@value’).extract_first()
91 r["product"] = product
92 review = r.save()
93

94 for pro in
sel.xpath(’//div[@class="pros"]/ul/li/text()’).extract():

95 rp = ReviewPointItem()
96 rp["content"] = pro.strip().encode(’utf-8’)
97 rp["positive"] = True
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98 rp["review"] = review
99 rp.save()

100

101 for con in
sel.xpath(’//div[@class="cons"]/ul/li/text()’).extract():

102 rp = ReviewPointItem()
103 rp["content"] = con.strip().encode(’utf-8’)
104 rp["positive"] = False
105 rp["review"] = review
106 rp.save()
107

108 return



B M A C H I N E L E A R N I N G

1 import numpy as np
2 from sklearn.base import BaseEstimator
3

4 from django.core.management.base import BaseCommand, CommandError
5

6 from reviews.models import Product, Review, ReviewPoint, NGram,
ReviewSentence, Word, Sentiment, WordCategory

7 from collections import Counter, defaultdict
8 from django.db.models import Q, Count
9

10 from .misc import *
11 from .nltk_functions import *
12

13 from sklearn import svm
14 from sklearn.naive_bayes import *
15

16 from sklearn.feature_extraction.text import CountVectorizer
17 from sklearn.feature_extraction.text import TfidfVectorizer,

TfidfTransformer
18

19 from sklearn.preprocessing import MultiLabelBinarizer
20

21 from sklearn import preprocessing
22 from sklearn.pipeline import Pipeline, FeatureUnion
23 from sklearn.metrics import classification_report
24

25 from sklearn.metrics import precision_score, recall_score, f1_score,
accuracy_score

26 from skll.metrics import kappa
27

28 from nltk.stem import WordNetLemmatizer
29 from nltk.stem import SnowballStemmer
30 from nltk.stem.snowball import DutchStemmer
31

32 import time
33

34 class Command(BaseCommand):
35

36 pointlist = []
37

38 def add_arguments(self, parser):
39

40 # Named (optional) arguments
41 parser.add_argument(’--dev’,
42 action=’store_true’,
43 dest=’dev’,
44 default=False,
45 help=’SVM - evaluating on dev’)
46 parser.add_argument(’--gold’,
47 action=’store_true’,
48 dest=’gold’,
49 default=False,

22
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50 help=’SVM - evaluating on dev’)
51 parser.add_argument(’--supervised’,
52 action=’store_true’,
53 dest=’supervised’,
54 default=False,
55 help=’SVM - evaluating on dev’)
56 parser.add_argument(’--evaluate-silver’,
57 action=’store_true’,
58 dest=’evaluate-silver’,
59 default=False,
60 help=’SVM - evaluate silver’)
61 parser.add_argument(’--kappa’,
62 action=’store_true’,
63 dest=’kappa’,
64 default=False,
65 help=’Calculate kappa’)
66 parser.add_argument(’--play’,
67 action=’store_true’,
68 dest=’play’,
69 default=False,
70 help=’SVM - Playing with code’)
71

72

73 def handle(self, *args, **options):
74 """ Do your work here """
75

76 if options[’dev’]:
77 self.test("dev")
78 if options[’gold’]:
79 self.test("gold")
80 if options[’supervised’]:
81 self.test_supervised()
82 if options[’evaluate-silver’]:
83 self.evaluate_silver()
84 if options[’kappa’]:
85 self.kappa()
86 if options[’play’]:
87 self.play()
88

89 def tokenize_preprocess(self, x):
90 tokenized = nltk.word_tokenize(x)
91 newlist = []
92 for word in tokenized:
93 if is_stopword(word) == False:
94 newlist.append(word)
95 return newlist
96

97 def preprocessor(self, x):
98 tokenized = nltk.word_tokenize(x)
99

100 pos_tags = " ".join([tag for (word, tag) in
nltk.pos_tag(nltk.word_tokenize(x))])

101 sentence = " ".join([DutchStemmer().stem(word) for word in
tokenized])

102

103 return sentence+" "+pos_tags
104

105

106 def read_points(self):
107 """
108 Read all positive and negative points
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109 """
110 print("Read points")
111

112 pointlist = []
113 pos = ReviewPoint.objects.filter(review__status="train",

positive=True).all().order_by(’review’)
114 pointlist.append(pos)
115

116 neg = ReviewPoint.objects.filter(review__status="train",
positive=False).all().order_by(’review’)

117 pointlist.append(neg)
118

119 self.pointlist = pointlist
120

121

122 def build_classifier(self, category=None, num_pos=None,
num_neg=None):

123 print("Build classifier")
124

125 count_vectorizer = CountVectorizer(preprocessor =
self.preprocessor, tokenizer = self.tokenize_preprocess,
ngram_range=(1, 4))

126 tfid_vectorizer = TfidfVectorizer(preprocessor =
self.preprocessor, tokenizer = self.tokenize_preprocess,
ngram_range=(1, 4))

127

128 X = []
129 y = []
130

131 if category == None:
132 words =

Word.objects.filter(selected=True).exclude(category__name="Overig").all()
133 else:
134 words = Word.objects.filter(selected=True,

category=category).all()
135

136

137 if self.pointlist == []:
138 self.read_points()
139

140

141 total = len(self.pointlist[0])+len(self.pointlist[1])
142 counter = 0
143 posCounter = 0
144 negCounter = 0
145

146 xPos = []
147 xNeg = []
148

149 """
150 Select all relevant sentences
151 TODO: Prevent sentences been marked twice for the same category
152 """
153 for points in self.pointlist:
154 for rp in points:
155 counter += 1
156 progress(counter, total)
157

158 sentences = get_sentences(rp.review.content)
159 for word in words:
160 if word.name in rp.content:
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161 for sentence in sentences:
162 for category_word in

Word.objects.filter(category=word.category).all():
163 if category_word.name in sentence:
164 sentiment = rp.positive
165 if sentiment:
166 xPos.append(sentence)
167 else:
168 xNeg.append(sentence)
169 break
170

171

172 """
173 Select number of positive and negative items
174 """
175 if num_pos != None:
176 if len(xPos) > num_pos:
177 xPos = xPos[:num_pos]
178 X += xPos
179 y += ["positive"]*len(xPos)
180

181 if num_neg != None:
182 if len(xNeg) > num_neg:
183 xNeg = xNeg[:num_neg]
184 X += xNeg
185 y += ["negative"]*len(xNeg)
186

187 print("\n{} positive\n{} negative".format(len(xPos), len(xNeg)))
188

189 clf = svm.SVC(kernel=’linear’, probability=True)
190 # clf = MultinomialNB()
191

192 pipeline = Pipeline([
193 (’features’, FeatureUnion([
194 (’ngram_tf_idf’, Pipeline([
195 (’counts’, count_vectorizer),
196 (’tf_idf_ngram’, TfidfTransformer()),
197 ])),
198 (’pos_tf_idf’, Pipeline([
199 (’tf_idf’, tfid_vectorizer),
200 ])),
201 ])),
202 (’clf’, clf)
203 ])
204

205 pipeline.fit(X, y)
206

207 return pipeline
208

209

210 def build_gold_classifier(self, category=None, num_pos=None,
num_neg=None):

211 count_vectorizer = CountVectorizer(preprocessor =
self.preprocessor, tokenizer = self.tokenize_preprocess,
ngram_range=(1, 4))

212 tfid_vectorizer = TfidfVectorizer(preprocessor =
self.preprocessor, tokenizer = self.tokenize_preprocess,
ngram_range=(1, 4))

213

214

215 test_reviews = Review.objects.filter(status="dev").all()
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216 total = len(test_reviews)
217 counter = 0
218

219 X = []
220 y = []
221

222 for test_review in test_reviews:
223 counter += 1
224 progress(counter, total)
225

226 if category != None:
227 ss = Sentiment.objects.filter(
228 Q(annotation__sentence__review=test_review) &
229 Q(annotation__category=category) & (
230 Q(user="jorrit") | Q(user="maike") |
231 Q(user="abdul") | Q(user="grote liefde"))).all()
232 else:
233 ss = Sentiment.objects.filter(
234 Q(annotation__sentence__review=test_review) & (
235 Q(user="jorrit") |
236 Q(user="maike") |
237 Q(user="abdul") |
238 Q(user="grote liefde"))).all()
239 for s in ss:
240 if s.sentiment != None:
241 if s.sentiment == "positive" or s.sentiment ==

"negative":
242 if s.sentiment == "positive":
243 y.append("positive")
244 if s.sentiment == "negative":
245 y.append("negative")
246 else:
247 y.append("neutral")
248 X.append(s.annotation.sentence.content.strip())
249

250 clf = svm.SVC(kernel=’linear’, probability=True)
251

252 pipeline = Pipeline([
253 (’features’, FeatureUnion([
254 (’ngram_tf_idf’, Pipeline([
255 (’counts’, count_vectorizer),
256 (’tf_idf_ngram’, TfidfTransformer()),
257 ])),
258 (’pos_tf_idf’, Pipeline([
259 (’tf_idf’, tfid_vectorizer),
260 ])),
261 ])),
262 (’clf’, clf)
263 ])
264

265 pipeline.fit(X, y)
266

267 return pipeline
268

269 def get_test_set(self, category=None, type="dev"):
270 print("\n Get test set: {}".format(type))
271

272

273 test_reviews = Review.objects.filter(status=type).all()
274 total = len(test_reviews)
275 counter = 0
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276

277 xTest = []
278 yTest = []
279

280 for test_review in test_reviews:
281 counter += 1
282 progress(counter, total)
283

284 if category != None:
285 ss = Sentiment.objects.filter(
286 Q(annotation__sentence__review=test_review) &
287 Q(annotation__category=category) & (
288 Q(user="jorrit") |
289 Q(user="maike") |
290 Q(user="abdul") |
291 Q(user="grote liefde"))).all()
292 else:
293 ss = Sentiment.objects.filter(
294 Q(annotation__sentence__review=test_review) & (
295 Q(user="jorrit") | Q(user="maike") |
296 Q(user="abdul") | Q(user="grote liefde"))).all()
297 for s in ss:
298 if s.sentiment != None:
299 if s.sentiment == "positive" or s.sentiment ==

"negative":
300 if s.sentiment == "positive":
301 yTest.append("positive")
302 if s.sentiment == "negative":
303 yTest.append("negative")
304 else:
305 yTest.append("neutral")
306 xTest.append(s.annotation.sentence.content.strip())
307

308

309 return (xTest, yTest)
310

311

312 def calculate_with_threshold(self, predicted, probabilities,
threshold):

313 for i in range(len(predicted)):
314 if probabilities[i][0] > 1-threshold and probabilities[i][0]

< threshold:
315 predicted[i] = "neutral"
316

317 return predicted
318

319

320 def test(self, type):
321

322 """Run for categories"""
323 threshold = 0.65
324

325 for category in
WordCategory.objects.exclude(name="Overig").all():

326 print("Category: {}".format(category.name))
327

328 classifier = self.build_classifier(category=category)
329 testSet = self.get_test_set(category=category, type=type)
330

331 yPredict = classifier.predict(testSet[0])
332 yProbability = classifier.predict_proba(testSet[0])
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333 yPredict_with_theshold =
self.calculate_with_threshold(yPredict, yProbability,
threshold)

334

335

336 print("\n\n")
337

338 report = classification_report(testSet[1],
yPredict_with_theshold)

339 print(report)
340

341 print("\n\n")
342

343 def test_supervised(self):
344 threshold = 0.65
345

346 for category in
WordCategory.objects.exclude(name="Overig").all():

347 print("Category: {}".format(category.name))
348

349 classifier = self.build_gold_classifier(category=category)
350 testSet = self.get_test_set(category=category, type="gold")
351

352 yPredict = classifier.predict(testSet[0])
353 yProbability = classifier.predict_proba(testSet[0])
354 yPredict_with_theshold =

self.calculate_with_threshold(yPredict, yProbability,
threshold)

355

356

357 print("\n\n")
358

359 report = classification_report(testSet[1],
yPredict_with_theshold)

360 print(report)
361

362 print("\n\n")
363

364 def evaluate_silver(self):
365 """
366 methods that compares silver and gold annotated data
367 prints precision, recall, f-score
368 """
369 annotated_sentiment_list = []
370 silver_sentiment_list = []
371

372 annotated_sentences = Sentiment
373 .objects.filter(
374 Q(user="jorrit") | Q(user="maike") |
375 Q(user="abdul") | Q(user="grote liefde")).all()
376

377 for sa in annotated_sentences:
378 annotated_sentiment = sa.sentiment
379 annotation_category = sa.annotation.category
380 words =

Word.objects.filter(category=annotation_category).all()
381 review_points =

ReviewPoint.objects.filter(review=sa.annotation.sentence.review)
382 for word in words:
383 for rp in review_points:
384 if word.name in rp.content:
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385 if rp.positive == True:
386 silver_sentiment = "positive"
387 if rp.positive == False:
388 silver_sentiment = "negative"
389

390 if annotated_sentiment != "positive" and
annotated_sentiment != "negative":

391 annotated_sentiment = "neutral"
392

393 annotated_sentiment_list.append(annotated_sentiment)
394 silver_sentiment_list.append(silver_sentiment)
395

396

397 report = classification_report(annotated_sentiment_list,
silver_sentiment_list)

398 print(report)
399

400 def kappa(self):
401 """
402 calculates kappa score between different annotaters
403 """
404

405 kappa_dict = defaultdict(list)
406

407 objects =
Sentiment.objects.values(’annotation’).annotate(dcount=Count(’annotation’))

408 for row in objects:
409 annotations_of_sentence =

Sentiment.objects.filter(annotation__pk=row["annotation"])
410 if len(annotations_of_sentence) > 1:
411 users = []
412 for annotation in annotations_of_sentence:
413 if annotation.user not in users:
414 users.append(annotation.user)
415

416 if len(users) > 1:
417

418 u1 =
Sentiment.objects.filter(annotation__pk=row["annotation"],
user = users[0]).last()

419 u2 =
Sentiment.objects.filter(annotation__pk=row["annotation"],
user = users[1]).last()

420

421 if u1.sentiment not in ["positive", "negative"]:
422 u1.sentiment = 0
423 elif u1.sentiment == "positive":
424 u1.sentiment = 1
425 else:
426 u1.sentiment = -1
427

428 if u2.sentiment not in ["positive", "negative"]:
429 u2.sentiment = 0
430 elif u2.sentiment == "positive":
431 u2.sentiment = 1
432 else:
433 u2.sentiment = -1
434

435 if users[0]+"_"+users[1] in kappa_dict.keys():
436 kappa_dict[users[0]+"_"+users[1]].append((u1.sentiment,

u2.sentiment))
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437 elif users[1]+"_"+users[0] in kappa_dict.keys():
438 kappa_dict[users[1]+"_"+users[0]].append((u1.sentiment,

u2.sentiment))
439 else:
440 kappa_dict[users[0]+"_"+users[1]].append((u1.sentiment,

u2.sentiment))
441

442 for users, sentiments in kappa_dict.items():
443 y1 = [s[0] for s in sentiments]
444 y2 = [s[1] for s in sentiments]
445 k = kappa(y1, y2)
446 print("users: {}, number: {}, kappa: {}".format(users,

len(sentiments), k))
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