
Domain adaptation in sentiment

analysis

combining cross-domain data for better text

classification

Steven Kema

Bachelor thesis
Informatiekunde
Steven Kema
2068222

June 13, 2016

A B S T R A C T

In this paper we investigate the usefulness of combining data from differ-
ent domains as a way to accomplish domain adaptation in sentiment anal-
ysis. Text classification is carried out through the Naive Bayes algorithm
and is implemented through Python Nltk. The data used consists of user-
generated game reviews web-scraped from online gaming platform Steam.
Genre categories of these reviews are used as different domains. Having a
training set consist of 70-90% of genre Sports and rest other genre yields
the best results for an overall good classification system, with an average ac-
curacy score around 0.75. A potential reason for this observation is that the
feature set for Sports is relatively sparse and a result lends itself as a good
base set for sentiment analysis. Additionally, domain-dependent behavior
is observed in using genres for different domains, which might mean that
a smaller differentiating factor such as genre can be utilized in overcoming
the domain adaptation problem.

i

C O N T E N T S

Abstract i

1 introduction 1

2 background 3

3 data and material 4

3.1 Collection . 4

3.2 Annotation . 5

3.3 Processing . 5

4 method 7

4.1 Tools . 7

4.2 Approach . 7

4.2.1 Part 1 . 7

4.2.2 Part 2 . 8

4.2.3 Part 3 . 8

5 results and discussion 9

5.1 Choosing the best N . 9

5.2 Observing domain-dependent behavior 11

5.3 Combining datasets . 11

6 conclusion 16

ii

1 I N T R O D U C T I O N

How do people on Twitter feel about the current political climate? Can we
predict how financial markets will move based on news reports and social
media sentiment? Is it possible to automatically get insight into customer
satisfaction through user reviews? These are all questions that have to do
with a technique called sentiment analysis. Sentiment analysis, also known
as opinion mining, is a rapidly developing field of study that analyzes peo-
ple’s opinions, sentiments, and emotions towards a whole range topics (Liu,
2012).

Sentiment analysis has since the early 2000s grown to be one of the most
active research areas in natural language processing, yet is still a relatively
young field with a long way to go, and progress to be made (Liu, 2012).
This small academic base is predominantly due to a lack in availability of
opinionated text before the rise of the World Wide Web (Liu, 2010). Plat-
forms such as Twitter, discussion forums, and blogs nowadays provide a
vast amount of user-generated content that can be collected, processed and
used for scientific research (in this case sentiment analysis/opinion mining).

According to Liu (2012) it has been shown that sentiment classification
is highly sensitive to the domain from which the training data is extracted.
The term domain is used to delimit a certain category of opinion documents;
example categories being movie reviews, fincancial reports, legal text or
scientific articles. Training a classifier on opinionated text from one defined
domain will therefore perform relatively bad when testing it on text coming
from a different domain, compared to testing on its own training domain.
This is because words and used in the different domains for expressing
opinions can be used differently. For example a word can have a positive
meaning in one domain, yet may be negative in another (Loughran and
McDonald, 2011). Being able to build a text classifier that works well on
multiple types of text is therefore very useful, because it can save a lot of
time and effort. This is due to the fact that collecting data, processing, and
most importantly annotating the test, development, and training dataset
accurately is quite labor intensive. Research on domain adaptation tries to
solve this inability of using a broader domain for classification. Domain
adaptation (also called domain transfer) refers to the problem of adapting a
statistical classifier trained on data from one (or more) source domains to a
different target domain (Prettenhofer and Stein, 2010).

In this paper the effectiveness of combining data from different domains
as a domain adaptation technique will be examined using user-generated
game reviews as data. The guiding research questions will be as follows:

1. Can we observe domain dependency in sentiment analysis between
user reviews of different game genres?

2. Does the process of combining in- and out-domain training data result
in an overall better sentiment classification system?

3. Is Steam user reviews a useful data source for research in transfer
learning and sentiment analysis?

1

introduction 2

The data used for the analyses will come from the online gaming plat-
form Steam 1. Steam gives users the ability to purchase and download video
games. After purchasing a game these users are given the option of review-
ing their bought games, in which they have to give a sentiment about the
game (either positive or negative). This gives us a new large, annotated, and
accessible data set that can be used to determine user sentiment.

The accepted contemporary application of sentiment analysis is through
the use of Machine Learning algorithms. These algorithms and be divided
into two/three categories: supervised, semi-supervised, and unsupervised.
A classifier is trained on a training set, then tested on a separate testing
set of opinions. During testing the algorithm will try to predict whether a
text is positive or negative based on data presented in the training set. In
this paper Naive Bayes will used to classify reviews as either positive or
negative.

The domain approach of this paper is to divide user reviews into smaller
groups (based on game genre)to see if they can be used in the field of
domain transfer/adaptation. These smaller groups have the advantage of
having decent enough overlap with each other in terms of domain related
words. These categories will act as sub-domains, and should help us in
training a classifier that makes use of domain adaptation techniques. If this
approach proves to be successful in improving the detection of sentiment
in cross-domain text classification, it will provide researchers a useful new
dataset to train and test domain adaptation techniques on. The main goal
of this paper however is to observe domain dependent behavior in senti-
ment analysis, and to see whether combining different domains improves
sentiment classification systems.

1 http://store.steampowered.com

2 B A C KG R O U N D

In literature different approaches to sentiment analysis and domain adapta-
tion are explored. Pang et al. (2002) were the first ones to take the approach
to classify movie reviews into two classes, positive and negative. It was
shown that using unigrams (a bag of words) as features in classification
performed quite well with either Naive Bayes or SVM (Liu, 2012). An espe-
cially interesting application can be found in using the genre of games and
their reviews in combination with domain adaptation. In sentiment analysis,
classification systems are usually built for a specific domain, such as movie
reviews (Pang et al., 2002), congressional floor debates (Thomas et al., 2006)
or product recommendations (Snyder and Barzilay, 2007).

One such a way is through Structured Correspondence Learning (SCL),
proposed by Blitzer et al. (2007). In the experiment they make use of a
corpus of reviews for four different types of products from online retailer
Amazon: books, electronics, DVDs, and kitchen appliances. SCL’s working
is based on the choosing of certain pivot features. These are features that
are used to link source and target domain.

Aue and Gamon (2005) on the other hand choose a different approach to
tackling the adaptation problem. For the domain adaptation problem four
approaches are presented by Aue and Gamon (2005). The first one is to train
on a mixture of labeled data from other domains. The second approach is
to limit the set of features to those observed in the target domain. The third
way is to use ensembles of classifiers from domains with available labeled
data. The last approach is to combine small amounts of labeled data with
large amounts of unlabeled data in the target domain. In their research they
collect their data from four different sources: movie review data, book re-
view data, Product Support Services web survey data, and Knowledge Base
web survey data. (Aue and Gamon, 2005) have chosen these four sources
based on the property differences between text types. They note that movie
reviews tend to be lengthy and elaborate; book reviews are shorter but still
may consist of multiple paragraphs, and that the two sets of survey data,
on the other hand, consist of typically very short pieces of text. In contrast
this experiment will make use of data that has a relatively uniform structure
between domains, and focuses mostly on linguistic, and context-dependent
differences pertaining to sentiment analysis. This is possible due to sourc-
ing the data from only one platform, and distinguishing domains based on
the different genres.

3

3 DATA A N D M AT E R I A L

3.1 collection
The data that is needed to perform the experiment consists of user-generated
reviews from online platform Steam. The collection of review data is done
by web scraping the reviews off the Steam Store website. This approach is
chosen due to the fact that even though Steam has an API, it unfortunately
does not provide an option to obtain user reviews in this way. Using a web
scraper is therefore the next best thing. Each game sold on the platform has
its own web page; each store page showing a selection of user reviews for
the particular game.

The way web scraping works is that an html page (could also be xml)
is requested and parsed for specified content. Relevant content is then re-
turned. A straightforward approach would be to parse the page from the
following link for each game:

1 http://store.steampowered.com/appid/[id-code]

The [id-code] is the unique identifier for each game. Unfortunately due to
the way reviews are provided by the website it is not possible to scrape in
this manner. The workaround is to access the reviews via an alternative url,
namely:

1 http://store.steampowered.com/appreviews/{0}?start_offset={1}&day_range
={2}&filter={3}&language={4}

The review scraper is written in Python and uses Requests combined Beauti-
fulSoup to collect the user reviews. Requests is an HTTP library for Python
that allows you to connect to web pages in order to pull data from it. The
code snippet below shows how Requests is used in the scraper.

1 import requests
2 url = ’http://store.steampowered.com/appreviews/{0}?start_offset={1}&

day_range={2}&filter={3}&language={4}’
3 url = url.format(app_id,offset,day_range,filter_type,language)
4 r = requests.get(url)
5 json = r.json()

The script loops over this part of the code, requesting and scraping the url
page, then increasing the offset by 25 and repeating the process. Increasing
the specified offset variable in the url allows the script to scrape a set of new
reviews, either until a specified maximum amount of reviews is reached, or
until there are no more reviews left for the game.

BeautifulSoup is a library for pulling data out of HTML and XML pages.
It finds all review blocks <div class="review_box">..reviews..</div> in the
provided json content and looks for each review’s user given sentiment and
review text. Additional data such as username and date of writing can be
collected in exactly the same way, but since this data wasn’t used in the
experiment it was omitted to increase speed of the scraper.

1 from bs4 import BeautifulSoup
2 soup = BeautifulSoup(json["html"], "lxml")
3 review_box = soup.find_all("div",class_="review_box")

4

3.2 annotation 5

4 for review in review_box:
5 review_text = review.find("div",class_="content").get_text()
6 sentiment = review.find("div",class_="title ellipsis").get_text()

Scraped content is returned and is written to a .csv file with the use of the
csv.writer() module. All reviews for a particular game are written to one .csv
file and are categorized based on the genre assigned to them by Steam. The
chosen genres are: action, simulation, sports, strategy. The dataset contains
around 320000 user reviews in total. The distribution is not equal however,
due to the fact that some genre domains have less reviews over the whole
genre. To correct this, the amount of reviews used in the analysis is based
on the genre with the lowest review count.

3.2 annotation
In order to perform text classification through through supervised learning,
an annotated dataset will be needed for the training of a classifier. This
dataset will consist out of game review content and the accompanying sen-
timent of each review. This sentiment can be either ’Recommended’ or ’Not
Recommended’, and is provided by the users that write and publish their
review. A user is only allowed to publish a review when they include a
sentiment, so all reviews will contain a specified sentiment by default. An
example of a Steam user review can be found below (figure 1). Category
distinction is based on genre, and is selected by hand. Each game belongs
to one or more genres: a primary genre is selected. Since annotation is
already part of the data collection it can be considered automatically gener-
ated. Its annotation quality is therefore not Gold Standard (GSC), but falls
under Silver Standard Corpora (SSC) (Wissler et al., 2014).

Figure 1: An example of a positive user review on Steam.

3.3 processing
Since users can only review the games that they’ve bought not many of the
reviews will be spam. Also since each reviewer must give their review a sen-
timent, which is either positive or negative, annotation is already provided
and no processing for this is needed. Connecting the user sentiment with
their review will probably give an accurate enough classification. One im-
portant thing is that the reviews should all be written in the same language;

3.3 processing 6

I have chosen English since this will give the largest dataset. Since the Steam
platform already filters their reviews based on language, the expectation is
that most collected reviews will be in English already. In order to filter out
any non- english reviews the language option built into nltk’s word tok-
enizer is used, which uses both the TreebankWordTokenizer (based on Penn
Treebank) and PunktSentenceTokenizer. The code snippet below shows the
usage of the module.

1 from nltk.tokenize import word_tokenize
2 tokenized_review = word_tokenize(review, language=’english’)

Loading data into the classifier script can be seen in the snippet below. Re-
views are taken from the directory path’s .csv files and put into either a
negative or a positive list, depending on the given user sentiment.

1 def load_dataset(path, genre, limit):
2 file_directory = join(path, genre)
3 print("Loading reviews from: {}".format(file_directory))
4 reviews_positive = []
5 reviews_negative = []
6 for file in glob.glob(os.path.join(file_directory, ’*.csv’)):
7 with open(file, "r", encoding="utf-8") as f:
8 reader = csv.reader(f)
9 #skip the first line as it only contains header information

10 next(reader, None)
11 for line in reader:
12 if line[6] == "Recommended":
13 reviews_positive.append((get_features(line[5]), "p"

))#p:positive
14 else:
15 reviews_negative.append((get_features(line[5]), "n"

))#n:negative
16 if len(reviews_positive) >= limit and len(

reviews_negative) >= limit:
17 return review_positive, reviews_negative
18 return reviews_positive, reviews_negative

4 M E T H O D

4.1 tools
Since the dataset is fully labeled, supervised learning will be the most logical
approach for this experiment. The used sentiment classification algorithm
will be Naive Bayes, which is a Bag of Words method. Since this exper-
iment’s focus is on observing domain dependency together with domain
adaptation, and not on improving a classifier, the type classification algo-
rithm isn’t further explored. It is therefore kept the same across the whole
experiment in order to achieve constant and valid results.

The machine learning and natural language aspects will be implemented
with the help of Python Natural Language Toolkit (NLTK). It provides easy-
to-use interfaces to over 50 corpora and lexical resources such as WordNet,
along with a suite of text processing libraries for classification, tokenization,
stemming, tagging, and parsing (NLTKProject, 2016). The code example
shows the implementation of Nltk’s Naive Bayes classifier.

1 from nltk.classify import NaiveBayesClassifier
2 #train the classifier
3 classifier_a = NaiveBayesClassifier.train(labeled_a)

Evaluation will be done with the use of accuracy scores. Accuracy ranges
from 0 to 1 and is based on the classifier’s amount of correctly predicted
reviews compared to the overall amount. A better performing system will as
a result produce a higher accuracy score than a worse system. The formula
below shows how accuracy is calculated.

Accuracy =
true positive + true negative

true positive + false positive + false negative + true negative

True positive and true negative are the amount of correctly predicted re-
views: true positive for "Recommended" and true negative for "Not Recom-
mended". False positive and false negative are the amount of reviews of
which the sentiment was predicted incorrectly.

4.2 approach

4.2.1 Part 1

Using n-grams instead of single tokenized words in a bag of words method
can help increase the accuracy score of a classifier. The classifier script will
load two different genre datasets, train two classifiers, then testing both in-
and out-domain. The process is then repeated for a different n-gram. This
will be done for an n-gram range between 1 to 5. Afterwards the out-domain
accuracy scores will be combined into an average accuracy for each classifier,
making it possible to see which n-gram performs best overall. Also an in-
domain graph will be plotted. In order to find the optimal n-gram, these
steps will be repeated for different genre combinations. The amount of

7

4.2 approach 8

reviews for each genre will be the same, and kept constant for the other
experiment parts. Each genre will have a dataset of 8000 reviews, half of
them positive, and the other half negative. For testing 10% of the reviews
will be taken from the dataset before using the rest of them for training.

4.2.2 Part 2

The goal of this part of the experiment is to find out if we can observe
domain-dependent behavior between two different genres. After deciding
on the overall best n-gram from part 1, accuracy score analysis of out-
domain classification will take place for this best n-gram. Accuracy scores
from part 1 of the method will be used for this.

4.2.3 Part 3

In order to find out if combining data from two different domains results
in an overall superior classifier, the following approach will be taken. The
first step is to see how the two domains perform separately, on their own as
well as the other domain. This is to get an understanding of each domain’s
baseline performance. The next step is to mix the training set to be used on
the classifier. The choice has been made to mix data from the two domains
with a linear ratio, starting from 10% to 90% using steps of 10%. This will
give us a relatively detailed overview on the effects of combining training
data . Accuracy scores will be recorded to see if a trend can be observed
from the combining of data originating from two different domains. This
experiment will be performed for all combinations of the four genres.

5 R E S U LT S A N D D I S C U S S I O N

5.1 choosing the best n
The classification accuracies resulting from in-domain testing and training
are shown in table 1, and are visualized by genre in figure 2. The in-domain
accuracy scores of the strategy domain are the highest for all n-grams. The
simulation genre performs the worst overall, even though its score is a bit
higher than Sports at N = 3. More generally the classifiers seem to benefit
the usage of both bigrams and trigrams, compared to their unigram base-
lines. At N = 4 however, performance goes down. Another thing that can be
observed from the data is that in general a higher N makes the classifiers for
the different genres perform more similar. At N = 5 the accuracy scores for
each genre are almost all the same. A reason for this could be that 5-grams
are too sparse and don’t provide enough information for the classifier to be
able to predict properly. This seems to even out to an accuracy score around
0.61. Trigrams perform arguably the best of all five, due to the fact that
accuracy scores stay quite high, yet also achieve relatively similar scores for
each genre. Bigrams could prove to be a relevant alternative.

Table 1: Accuracy scores of in-domain sentiment analysis

Genre Ngram
1 2 3 4 5

Action 0.72375 0.76625 0.79625 0.6925 0.615

Simulation 0.65875 0.7025 0.75625 0.64125 0.6125

Strategy 0.81875 0.8575 0.81625 0.74875 0.63

Sports 0.69 0.79875 0.7175 0.69 0.6187

In table 2 and figure 3 below show the averaged out-domain accuracy
scores for each training domain, e.g. classifier is trained on action then
tested on simulation, strategy and sports. The three resulting accuracy
scores are then averaged to see which classifier performs best for out-domain
testing, combined with the selected n-gram. The graph shows that strategy
and sport perform comparable, and give higher average accuracy scores
than action and simulation. This could be an indication that these two pro-
vide an overall better base for cross-domain classification (relevant for part
2 and 3 of the experiment). The best n-grams are again for N=2 and N=3.
Between these two, action’s score is a bit higher for trigrams, but overall
there’s barely any difference between the two. Similarly scores go down
again for N greater than 3. In the further parts n-grams will be set at N=3

9

5.1 choosing the best n 10

Figure 2: in-domain n-gram classification

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N

A
cc

ur
ac

y
sc

or
e

Action: in-domain
Simulation: in-domain

Strategy: in-domain
Sports: in-domain

Table 2: Out-domain averaged n-gram accuracy scores

Genre Ngram
1 2 3 4 5

Action 0.580416667 0.610416667 0.650833333 0.6225 0.562083

Simulation 0.565 0.6125 0.616666667 0.617916667 0.57875

Strategy 0.685833 0.714583333 0.714166667 0.65375 0.575

Sports 0.615833333 0.726666667 0.71375 0.667916667 0.573333333

Figure 3: Out-domain averaged n-gram accuracy scores

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

N

A
ve

ra
ge

ac
cu

ra
cy

sc
or

e

trained domain: action
trained domain: simulation

trained domain: strategy
trained domain: sport

5.2 observing domain-dependent behavior 11

5.2 observing domain-dependent behavior
Below in table 3 the accuracy scores are set out against each other for tri-
grams. The first thing that can be noticed is that in-domain training and test-
ing results in the highest accuracy scores for action, simulation and strategy.
The exception to this is Sports, which is somewhat unusual because nor-
mally you’d expect that in-domain training and testing works the best. A
classifier trained on Sports games reviews gives the best result when tested
on Strategy, giving an accuracy score of 0.75375. The reason for this could
be that reviews on Sports games provide a more general set of features, giv-
ing us an overall more sparse classifier. All out-domain testing sets have the
lowest accuracy scores when the classifier is trained on Sports.

Table 3: Complete table of accuracy scores, N = 3

Testing
Action Simulation Strategy Sports

Training

Action 0.79875 0.6725 0.6375 0.6425

Simulation 0.65625 0.7675 0.61375 0.58

Strategy 0.68625 0.71875 0.81625 0.7275

Sports 0.68 0.7175 0.75375 0.7175

5.3 combining datasets
In the figure below (figure 4) the accuracy scores are plotted for test sets
from genre Action and Simulation, and an average between the two. On
the x-axis the percentages of combined training sets are presented. At a
percentage of 0, the training set is unmixed, and contains only reviews from
the Action domain. At 100% the training set only contains reviews from
Simulation. At these points the accuracy scores for their respective test sets
are the same as their usual in-domain scores. It is therefore no surprise that
the Action test set performs so well at 0% train mixed, and the other way
around for Simulation. At a 50/50 training set mix, both test sets perform
quite similar. Interestingly enough this also goes for 40/60 or 60/40, but
with the added effect that they both give better accuracy scores than at 50%.

Table 4: Combined datasets: Action- Simulation

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Action 0.79625 0.72875 0.7525 0.73125 0.73375 0.70875 0.745 0.72875 0.72625 0.71125 0.68625

Simulation 0.6725 0.695 0.69625 0.6975 0.7275 0.69375 0.7375 0.73625 0.765 0.73625 0.75625

Average 0.734375 0.711875 0.724375 0.714375 0.730625 0.70125 0.74125 0.7325 0.745625 0.72375 0.72125

5.3 combining datasets 12

Figure 4: Combined datasets: Action- Simulation

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Action
test set: Simulation
Averaged accuracy

A similar trend can be observed from the training set combination of
Action - Strategy, with again an apparent sweet spot at the 40/60 and 60/40

ratio.

Figure 5: Combined datasets: Action- Strategy

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Action
test set: Strategy

Averaged accuracy

Table 5: Combined datasets: Action- Strategy

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Action 0.755 0.78625 0.77625 0.76625 0.77625 0.74 0.77 0.76875 0.7275 0.75375 0.6375

Strategy 0.68625 0.6875 0.7125 0.71875 0.76375 0.74375 0.77875 0.79625 0.78375 0.82 0.8125

Average 0.720625 0.736875 0.744375 0.7425 0.77 0.741875 0.774375 0.7825 0.755625 0.786875 0.725

Combining Action with Sports gives us a completely different plot (fig-
ure 6) compared to Action- Simulation and Action - Strategy. The best over-
all classifier seems to be at 70% Sports/30% Action, and with no conver-
gence between 40-60%. If anything, looks like an inverted version of the

5.3 combining datasets 13

optimal percentages from the plots in figure 4 and 5, and shifted to the
right.

Figure 6: Combined datasets: Action- Sports

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Action
test set: Sports

Averaged accuracy

Table 6: Combined datasets: Action-Sports

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Action 0.79875 0.7675 0.75625 0.79 0.78 0.785 0.7375 0.7925 0.74625 0.695 0.68

Sports 0.6425 0.67375 0.68125 0.6975 0.70875 0.71125 0.6975 0.76625 0.71875 0.73 0.765

Average 0.720625 0.720625 0.71875 0.74375 0.744375 0.748125 0.7175 0.779375 0.7325 0.7125 0.7225

The plot for Simulation - Sports (figure 7) looks quite similar to figure
6 in its accuracy progression and combination percentage trend. The only
difference here is that optimal combination percentage is shifted to 80%
Sports, compared to 70% Sports in figure 6.

Figure 7: Combined datasets: Simulation- Sports

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Simulation
test set: Sports

Averaged accuracy

5.3 combining datasets 14

Table 7: Combined datasets: Simulation- Sports

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Simulation 0.7725 0.77875 0.73 0.75375 0.775 0.76125 0.78375 0.72875 0.79875 0.7475 0.7175

Sports 0.58 0.655 0.615 0.6725 0.6925 0.695 0.71375 0.69875 0.75125 0.76625 0.74125

Average 0.67625 0.716875 0.6725 0.713125 0.73375 0.728125 0.74875 0.71375 0.775 0.756875 0.729375

Figure 8 shows no distinct best percentage like the other plots. Only
at 30% the accuracy scores for both test sets are very similar, however the
average between the two is not the highest at this percentage. The highest
average accuracy is at 90%, with a score of 0.7775

Figure 8: Combined datasets: Simulation- Strategy

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Simulation
test set: Strategy

Averaged accuracy

Table 8: Combined datasets: Simulation- Strategy

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Simulation 0.7675 0.7375 0.75125 0.72625 0.79625 0.7525 0.72875 0.74625 0.71875 0.74875 0.71875

Strategy 0.61375 0.64125 0.69125 0.7475 0.74375 0.71125 0.76875 0.7825 0.77625 0.80625 0.795

Average 0.690625 0.689375 0.72125 0.736875 0.77 0.731875 0.74875 0.764375 0.7475 0.7775 0.756875

The result of combining the genre Sports with Strategy can be seen in fig-
ure 9. Interestingly enough the Sports test set performs worse than the Strat-
egy set at every percentage, even when training set is 100% Sports (which is
in-domain). At 90% Sports and 10% Strategy the Sports set does best, hav-
ing an accuracy score of 0.77. This is not the combination percentage with
the highest overall accuracy score, however the difference between Strategy
& Sports scores is minimal. Combining the two genres in this case only
seems to benefit the classification of Sports reviews.

5.3 combining datasets 15

Figure 9: Combined datasets: Sports - Strategy

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage (%) of training sets combined

A
cc

ur
ac

y
sc

or
e

test set: Sports
test set: Strategy

Averaged accuracy

Table 9: Combined datasets: Sports - Strategy

Genre Percentage combined
0 10 20 30 40 50 60 70 80 90 100

Sports 0.71875 0.7725 0.69625 0.71625 0.73875 0.755 0.73375 0.75 0.73625 0.705 0.7275

Strategy 0.75375 0.77 0.7775 0.7775 0.7575 0.80875 0.79875 0.8 0.81 0.79875 0.82625

Average 0.73625 0.77125 0.736875 0.746875 0.748125 0.781875 0.76625 0.775 0.773125 0.751875 0.776875

Ultimately there is no overall best combination percentage that can be
observed from this experiment. One interesting part however is that every
training set using the genre Sports seems to classify in a similar fashion. All
combinations with a high percentage Sports and low percentage other genre
seem to result in either a highest accuracy, or a good overall classifier with
minimal score difference between the two test sets. A reason for this could
be that reviews from the Sports genre maybe contain more general words
comparatively, and as a result combined with a smaller amount of more
specific features from another domain produce a relatively robust overall
classifier. On its own, genre Sports produces a bad classifier, which can
also be concluded from part 2 of the experiment. Used as a base classifier
with more specialized features from another domain however it becomes
quite good. Another observation is that a 40%/60% ratio (and vice-versa)
for Action- Simulation and Action- Strategy provides a good overall classi-
fier, yet gives worse results at a 50/50 combination. Maybe the feature set
becomes too weak at this point which negatively impacts both genres.

6 C O N C L U S I O N

Domain dependency can be observed in sentiment analysis between classi-
fiers based on different game genres. It seems that user-generated reviews
separated by their video game genres are distinct enough from each other
to make a difference when it comes to sentiment classification. In the exper-
iment nearly all genres gave the highest accuracy scores when in-domain
classification took place. The only exception is genre Sports, which performs
the worst both in- and out-domain, which might be due to the feature set be-
ing relatively sparse. From this can be concluded that treating video game
genres as separate domains is a viable option when it comes to sentiment
analysis in combination with domain adaptation/transfer learning research.

Combining data from different domains can result in an overall better
sentiment classification system. Even though there seems to be no universal
combination percentage for a best result, it seems that using a domain that
is relatively sparse in features combined with a more specific domain does
produce an improved overall system. This approach could prove useful for
future research into domain adaptation.

Steam provides a useful dataset for sentiment analysis research, due to:
volume, mandatory user annotated reviews, different genres to, and rela-
tively good language categorization. For future work additional metrics
and data are available, such as user profile information, user game infor-
mation, helpfulness rated by others, review funniness (maybe use-case of
detecting humorous language). A main limitation to Steam as a data source
of user-generated opinionated text is that data is silver quality (labels are
technically deduced from data, and not manually annotated). This could
be fixed by manually checking the generated labels. Another issue is that
most popular games are bought and reviewed more. If a game is deemed
bad/unpopular no people will buy it, so no people review it. This makes
it more difficult to get enough negative reviews. Overall Steam provides
a relatively good quality, accessible dataset with lots of options for future
research in sentiment analysis.

In the future sentiment analysis will in all likelihood evolve from rela-
tively low complexity (positive/negative/neutral) to a deeper understand-
ing and better predicting ability of sentiment and emotion. Being able to
construct a good classifier that can predict user sentiment more broadly
(broader domain or even multiple domains) will play an important role in
developing such a system. New insights and improvements on domain
adaptation will contribute to and facilitate these developments.

16

B I B L I O G R A P H Y

Aue, A. and M. Gamon (2005). Customizing sentiment classifiers to new
domains: A case study. In Proceedings of recent advances in natural language
processing (RANLP), Volume 1, pp. 2–1.

Blitzer, J., M. Dredze, F. Pereira, et al. (2007). Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In
ACL, Volume 7, pp. 440–447.

Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of natural lan-
guage processing 2, 627–666.

Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool
Publishers.

Loughran, T. and B. McDonald (2011). When is a liability not a liability?
textual analysis, dictionaries, and 10-ks. The Journal of Finance 66(1), 35–
65.

NLTKProject (2016). Nltk 3.0 documentation. Accessed: 2016-05-29.

Pang, B., L. Lee, and S. Vaithyanathan (2002). Thumbs up?: Sentiment clas-
sification using machine learning techniques. In Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing - Volume 10,
EMNLP ’02, Stroudsburg, PA, USA, pp. 79–86. Association for Computa-
tional Linguistics.

Prettenhofer, P. and B. Stein (2010). Cross-language text classification using
structural correspondence learning. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, ACL ’10, Stroudsburg,
PA, USA, pp. 1118–1127. Association for Computational Linguistics.

Snyder, B. and R. Barzilay (2007). Multiple aspect ranking using the good
grief algorithm. In HLT-NAACL, pp. 300–307.

Thomas, M., B. Pang, and L. Lee (2006). Get out the vote: Determining
support or opposition from congressional floor-debate transcripts. In Pro-
ceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’06, Stroudsburg, PA, USA, pp. 327–335. Association
for Computational Linguistics.

Wissler, L., M. Almashraee, D. M. Díaz, and A. Paschke (2014). The gold
standard in corpus annotation. In IEEE GSC.

17

	Abstract
	1 Introduction
	2 Background
	3 Data and Material
	3.1 Collection
	3.2 Annotation
	3.3 Processing

	4 Method
	4.1 Tools
	4.2 Approach
	4.2.1 Part 1
	4.2.2 Part 2
	4.2.3 Part 3

	5 Results and Discussion
	5.1 Choosing the best N
	5.2 Observing domain-dependent behavior
	5.3 Combining datasets

	6 Conclusion

