
Normalizing Social Media Texts by Combining Word Embeddings and Edit
Distances in a Random Forest Regressor

Rob van der Goot
University of Groningen
R.van.der.Goot@rug.nl

Abstract
In this work, we adapt the traditional framework for spelling correction to the more novel task of normalization of social media content.
To generate possible normalization candidates, we complement the traditional approach with a word embeddings model. To rank the
candidates we will use a random forest regressor, combining the features from the generation with some N-gram features. The N-gram
model contributes significantly to the model, because no other features account for short-distance relations between words. A random
forest regressor fits this task very well, presumably because it can model the different types of corrections. Additionally we show that
500 annotated sentences should be enough training data to train this system reasonably well on a new domain. Our proposed system
performs slightly worse compared to the state-of-the-art. The main advantage is the simplicity of the model, allowing for easy expansions.

Keywords: Normalization, Noise, Word Embeddings, Random Forest

1. Introduction

Because the task of normalization has a lot of similarities
with the task of spelling correction, many of the same meth-
ods can be used. The standard framework for spelling cor-
rection consists of three steps: error detection, candidate
generation and candidate ranking. In this paper, we will
use this framework, but skip the step of error detection;
because this model is meant to be used in a pipeline, this
task can be postponed, so that a more informed decision
can be made for this crucial step. Traditionally, the steps in
this framework were based on a combination of lexical and
phonetic distance measures. This approach was focused
on spelling correction and motivated by the fact that every
word that needs correction is a spelling error or typograph-
ical error. These alternations occur a lot in social media
data, but are complemented by other types of alternations
which are more domain specific. These include slang, ab-
breviations, domain-specific conventions and new linguis-
tic structures.
In this work, we will expand a traditional spelling correc-
tion method to adapt to the noisy social media domain.
Word embeddings are exploited to complement the tra-
ditional candidate generation which is based on lexical
and phonetical distances. Furthermore, a random forest
regressor will be used to combine the features which
are mainly collected during the generation. This simple
system allows for easy expansions, for example: multiword
replacements, word deletion or word insertion. Evaluation
will be done on the standard benchmark for normalization
of English social media texts: LexNorm 1.2 (Yang and
Eisenstein, 2013). An example sentence from this dataset
is shown in Sentence 1.

(1) new
new

pix
pictures

comming
coming

tomoroe
tomorrow

2. Related Work

Han and Baldwin (2011) describe one of the first normal-
ization approaches tailored for the social media domain.
First, candidates are generated by finding lexically and pho-
netically close words. Ranking is then done with a sup-
port vector machine. A wide range of features is used: de-
pendency tree distance, lexical edit distance, phonetic edit
distance, prefix substring, suffix substring and the longest
common substring.

A completely different approach is taken by Hassan and
Menezes (2013). Here, a bipartite graph is used with on
one side the words, and on the other side n-gram contexts
in which these words occur. In this bipartite graph, Markov
Random Walks are used to generate correction candidates.
Ranking is done afterwards, based on a lexical similarity
distance.

Xu et al. (2015) use lexical and phonetic features on the
syllable level instead of the word or character level. Sylla-
bles are extracted from erroneous words and are converted
to an ARPAbet representation (Rabiner and Juang, 1993).
The ARPAbet encoding of the erroneous token can be com-
pared to ARPAbet encodings of words taken from a dictio-
nary. Edit distances on the ARPAbet encoding are then used
to compare possible candidates.

An ensemble reranking method is proposed by Li and Liu
(2014), where four different systems for normalization are
combined including a spell checker and some machine
translation methods. Building further on this work, Li and
Liu (2015) created a joint model for normalization and POS
tagging. The candidate lists of the reranking model dis-
cussed in the previous paragraph are used in a Viterbi de-
coding (Viterbi, 1973). Traditionally, all possible POS tags
for a word in the sentence are used in the encoding, but in
the new model all possible POS tags for all possible correc-
tions are used in the encoding. This model achieves state-
of-the art performance on the LexNorm dataset as well
as on the standard benchmark for POS tagging of Twitter
data (Owoputi et al., 2013).



3. Method
Our system is based on two steps: candidate generation and
the ranking of the candidates. Both of them are discussed
in more detail below.

3.1. Candidate Generation
Candidate generation for unintended disfluencies is a much
studied problem; most approaches make use of the lexi-
cal or phonetic properties of a word to find similar words
in a vocabulary. Due to the vast amount of work, and the
good results on the task of finding lexically similar words,
we consider this task to be as good as solved. For this
reason, we will use the Aspell spell checker for this task,
which achieves a recall of 98% on a list of common mis-
spellings1. It uses a lexical edit distance combined with a
phonetic edit distance based on the Double Metaphone al-
gorithm (Philips, 2000). Aspell is slightly modified to be
able to process words consisting of only one character and
we include phonetic information about numerals.
To find normalizations replacements for intended noise, we
need a more meaning-driven approach. Word embeddings
capture the meaning of a word by using the context it oc-
curs in. A big advantage of this method is the fact that
word embeddings are trained on huge amounts of unlabeled
data, which is readily available for the social media do-
main. Words that occur in similar contexts will be close
to each other in the vector space, and are thus good nor-
malization candidates. We will use the word embeddings
model of Godin et al. (2015), which is originally used for
named entity recognition for Tweets. This skip-gram model
is trained on 400 million Tweets, uses 400 dimensions, and
contains over 3 million types.

3.2. Candidate Ranking
The task of finding the correct candidate can be interpreted
as a binary classification task as there are only two classes
we are trying to distinguish: correct and incorrect. This in-
terpretation enables the use of a binary classifier, but also
introduces some problems. Firstly, a binary classifier can
never guarantee to only assign one instance to a class, let
alone a list of possible candidates. This is solved by or-
dering the candidates using the probabilities of being in the
‘correct’ class.
Secondly, the training of a classifier with very few instances
in one class is a problem. Empirical experiments on our
training data shows that 85% of all tokens should be left
untouched, so simple ranking on one binary feature, and
thus zeroing out the others, results in an accuracy above
85%. This is solved by removing the original word be-
fore the training of the classifier. Because the original word
should often stay untouched, it is always used as the high-
est ranked candidate in the candidate list. Following from
this, the ranking is only evaluated on the erroneous tokens,
so only these tokens will be used as training data.
A Random Forest regression model is chosen because its
structure can adjust well to the underlying problem. This
model combines multiple decision trees, trained on random
subsets of the training data. Each input will follow a path

1http://aspell.net/test/orig/

down in every decision tree resulting in a prediction value
for each tree. These values are then averaged, which results
in one final prediction. This model is very suitable, be-
cause the underlying problem is not binary; we are trying
to normalize different types of disfluencies, which might
have very different values for the different features. More
concretely, this model can learn that a high value only on
feature A can be enough to classify it as the correct candi-
date, without excluding that feature B can have the same ef-
fect. We use the Random Forest implementation of Scikit-
Learn (Pedregosa et al., 2011) with its default parameters,
except for the number of estimators, which is set to 100.
The following features are used to train the random forest
model:

• A score used by Aspell to indicate the lexical and pho-
netical edit distance and binary features indicating if
the candidate and the original word can be found in
the Aspell dictionary.

• The distance in the vector space of the word embed-
dings model between the original word and the cor-
rection candidate.

• Uni- and bi- gram probabilities, taken from two
different n-gram models: a noisy twitter n-gram
model (Herdağdelen, 2013), and a model based on
clean texts (Brants and Franz, 2006).

4. Evaluation
4.1. Data
Two different normalization datasets are used in this work:

• Train set: 2,577 Tweets annotated with normalization
(Li and Liu, 2014). This dataset consists of tweets
taken from the Edinburgh Twitter Corpus (Petrović et
al., 2010), and are annotated using Amazon Turk.

• Test set: The LexNorm dataset (Han and Baldwin,
2011), 549 tweets from a different period annotated
by different annotators.

Both of these datasets use pre-tokenized tweets and only
allow corrections on the word level. This setup ensures that
our testing is robust with respect to biases in the annotation
style and time period.

4.2. Generation
The generation is evaluated only on the words that are cor-
rected in the annotated data. Two methods are compared,
the traditional Aspell, and the generation from the word
embeddings. However, our main interest is how well they
can complement each other. For this reason, we included a
naive combinatory method; this method simply takes equal
numbers of candidates from the other 2 methods.
The individual and combined results are shown in Fig-
ure 1a. Word embeddings work better for this task than
the traditional Aspell methods and combining them with a
simple combination method already proves that they can
complement each other. Additionally, we can see that the
improvement in recall using a list of more than 100 candi-
dates is moderate. One exception is the recall improvement
for Aspell at 318 candidates. This is because at the Aspell
candidate list for the common token ‘u’, the correct word

http://aspell.net/test/orig/


(a) Results for candidate generation (b) Comparison of ranking on single features

(c) Results of ablation experiments (d) Effect of quantity of training data

Figure 1: Evaluation results of different experiments

‘you’ is at the 318th position. This word has already been
found by the word embeddings (at position 3), so it does
not affect the combination line. This one word accounts for
a big part of the performance difference.

4.3. Ranking

Candidate ranking of a normalization system is usually
only evaluated on the highest scoring candidate for each
erroneous word. We will focus on two aspects: a high re-
call combined with a low number of candidates. A high
recall ensures that the right candidate is in the list so that
the following application has access to it and a low number
of candidates is important for efficiency down the pipeline.
Table 1 shows a comparison of our system with the pre-
vious work that reports scores for different numbers of
candidates, as well as the best performing system for this
task. Note that our generation is slightly worse compared
to the previous systems, this can probably be improved by
adding some domain specific heuristics or by tweaking the
word embeddings model. However, the ranking works sur-
prisingly well, after only 20 candidates the upperbound is
reached. The state-of-the-art system performs better on the
top 1 candidate, but this system is a lot more complex. Un-
fortunately, the results for other numbers of candidates are
not reported.

4.4. Feature Importance

First, we will evaluate how our features can perform on
their own, then we will see how important the feature are
with respect to the model in an ablation experiment.
Figure 1b shows the results of ranking on single features.
Word embeddings have the best performance for a low
number of candidates while the Twitter unigrams have the
highest performance with more candidates. Additionally,
we can see that Twitter N-grams generally work better, even
though the google N-gram model is based on clean data.
Presumably, this is because the Twitter N-grams have less
sparsity with respect to the test data.
The ablation experiments are done on feature-groups.
Grouping is done based on source level. The same group-
ing as in Section 3.2. is used. The results of the ablation
experiments are shown in Figure 1c. Surprisingly, the word
embeddings are the least important for ranking. This is

System top1 top3 top10 top20 upper bound
Li and Liu (2012) 73.0 81.9 86.7 89.2 94.2
Li and Liu (2014) 77.14 86.96 93.04 94.82 95.90
Li and Liu (2015) 87.58
Our system 82.31 88.70 91.89 93.37 93.37

Table 1: Recall of our system compared to previous work



probably because they reflect information from only one
perspective, the distance in the word vectors, whereas the
N-grams reflect on unigrams and bigrams from two differ-
ent language models. Furthermore, the N-grams reflect on
the relations of close words, which are important for gram-
matical correctness. Aspell appears to be very important
for the ranking step, presumably because most types of al-
ternations use some sort of lexical or phonetic variation of
the intended word.

4.5. Reduce Training Data
To adapt this model to another domain, three resources are
needed. A word embeddings model, an N-gram model and
annotated data. Because an annotated dataset is the most
expensive resource to acquire, only this resource is tested
for quantity. Figure 1d shows how the performance drops
when we decrease the amount of training data. After using
20% (≈ 500 sentences) of the training data the improve-
ments in performance are quite small.

5. Conclusion
We have shown that a spelling correction system can be
converted to a normalization system by using modern tech-
niques. Word embeddings can complement the lexical and
phonetical approaches well for candidate generation be-
cause it targets other types of noise. Additionally, a random
forest regressor can fit well to the normalization task, pre-
sumably because it can model the different kinds of noise in
different parts of its trees. There are still plenty of improve-
ments possible for this system, Aspell is not designed for
this domain and the word embeddings model was prepro-
cessed for another task. Almost no parameters have been
tuned for the random forest regressor. Another source of
improvement could be the addition of features.
Further directions include the addition of multiword re-
placements, but mainly the use of this system in a pipeline.
Only then its usefulness can be properly tested. Our system
outputs the whole candidate lists, and is made available on
the authors website.
Acknowledgements I would like to thank Gertjan van Noord,
my other colleagues and the anonymous reviewers for their valu-
able feedback, and the Nuance Foundation for funding the Parsing
Algorithms for Uncertain Input project.

6. Bibliographical References
Brants, T. and Franz, A. (2006). Web 1T 5-gram version

1. Technical report, Google.
Godin, F., Vandersmissen, B., De Neve, W., and Van de

Walle, R. (2015). Multimedia Lab @ ACL WNUT NER
shared task: Named entity recognition for Twitter mi-
croposts using distributed word representations. In Pro-
ceedings of the Workshop on Noisy User-generated Text,
pages 146–153, Beijing, China, July. Association for
Computational Linguistics.

Han, B. and Baldwin, T. (2011). Lexical normalisation of
short text messages: Makn sens a #twitter. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 368–378, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Hassan, H. and Menezes, A. (2013). Social text normal-
ization using contextual graph random walks. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1577–1586, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Herdağdelen, A. (2013). Twitter n-gram corpus with de-
mographic metadata. Language resources and evalua-
tion, 47(4):1127–1147.

Li, C. and Liu, Y. (2012). Improving text normalization
using character-blocks based models and system combi-
nation. In Proceedings of COLING 2012, pages 1587–
1602, Mumbai, India, December.

Li, C. and Liu, Y. (2014). Improving text normalization
via unsupervised model and discriminative reranking. In
Proceedings of the ACL 2014 Student Research Work-
shop, pages 86–93, Baltimore, Maryland, USA, June.
Association for Computational Linguistics.

Li, C. and Liu, Y. (2015). Joint pos tagging and text nor-
malization for informal text. In Proceedings of IJCAI.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schnei-
der, N., and Smith, N. A. (2013). Improved part-of-
speech tagging for online conversational text with word
clusters. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 380–390, Atlanta, Georgia, June. Association for
Computational Linguistics.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Ma-
chine learning in python. The Journal of Machine Learn-
ing Research, 12:2825–2830.

Petrović, S., Osborne, M., and Lavrenko, V. (2010). The
Edinburgh Twitter corpus. In Proceedings of the NAACL
HLT 2010 Workshop on Computational Linguistics in a
World of Social Media, pages 25–26, Los Angeles, Cal-
ifornia, USA, June. Association for Computational Lin-
guistics.

Philips, L. (2000). The double metaphone search algo-
rithm. In C/C++ users journal, volume 18, pages 38–43.

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of
speech recognition. Technical report, Prentice hall.

Viterbi, A. (1973). Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans. Inform. Theory, 13(2):260–269.

Xu, K., Xia, Y., and Lee, C.-H. (2015). Tweet normal-
ization with syllables. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 920–928, Beijing, China, July. Association for
Computational Linguistics.

Yang, Y. and Eisenstein, J. (2013). A log-linear model
for unsupervised text normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 61–72, Seattle, Washing-
ton, USA, October. Association for Computational Lin-
guistics.


	Introduction
	Related Work
	Method
	Candidate Generation
	Candidate Ranking

	Evaluation
	Data
	Generation
	Ranking
	Feature Importance
	Reduce Training Data

	Conclusion
	Bibliographical References

