Chapter 10

A new library for construction of
automata

Jan Daciuk
Gdansk University of Technology

We present a new library of functions that construct minimal, acyclic, deterministic,
finite-state automata in the same format as the author’s fsa package, and also accepted
by the author’s fadd library of functions that use finite-state automata as dictionaries
in natural language processing.

1 Introduction

Finite-state automata (Hopcroft, Motwani & Ullman 2007) are widely used in Natu-
ral Language Processing (NLP). Their applications in the domain include morphology
tools (e.g. x), tagging (Roche & Schabes 1995), approximate parsing (Nederhof 2000),
information retrieval (Hobbs et al. 1997), and many more. The most prominent ap-
plication is their use as dictionaries (Daciuk, Piskorski & Ristov 2010) for spelling
correction, morphological analysis and synthesis, speech processing, semantic pro-
cessing, etc.

Dictionaries in form of automata have been around for decades. The pioneering
work has been done in the group of Maurice Gross at Université Marne La Vallée, by
Tomasz Kowaltowski, Claudio Lucchesi, and Jorge Stolfi at Universidade Estadual de
Campinas, and by Martin Kay, Ronald Kaplan, Lauri Karttunen, and Kimmo Kosken-
niemi at Xerox. More software was developed later by other authors. That included
our fsa package.

2 fsa package

We started developing fsa package during our stay in ISSCO, Geneva, Switzerland in
the academic year 1995-1996. We were inspired by a lecture about transducers in NLP
given by Lauri Karttunen in Archamps. The package was expanded and modified also
afterwards to include new programs, new formats of automata representations, new
functions. At present it includes:



Jan Daciuk

« fsa_build and fsa_ubuild — programs for constructing (various) dictionaries
in form of finite-state automata. The first program accepts sorted data, the
latter one — data in arbitrary order;

« fsa_spell — a dictionary-based program for spelling correction;

« fra_morph — a dictionary-based program for morphological analysis, and for
lemmatization;

« fsa guess — a program for morphological analysis, and for lemmatization of
words not present in a lexicon, as well as for guessing morphological descrip-
tions of unknown words so that they could be added to a morphological dic-
tionary;

« fsa_synth — a dictionary-based program for morphological synthesis;

« fsa_accent — a dictionary-based program for restoring missing diacritics in
words;

« fsa prefix — a tool for listing the contents of a dictionary;

« fsa visual —atool for preparing data for a program that presents a dictionary
as a graph (obviously, that makes sense only for tiny dictionaries).

A companion library fadd was written during our postdoc at Rijksuniversiteit
Groningen from February 2000 to January 2003. It features the same functions as
programs of the fsa package except for programs fsa_build and fsa_ubuild. It also
contains handling of compressed language models.

The fsa package has been successfully used by many people, but there are several
problems with it. They are listed in the following subsections.

2.1 Difficult maintenance

The first program of the package (fsa_build) was written in 1995, and it was our
first program in C++. Each function has a comment explaining the purpose of the
function, the parameters, the return value, and remarks on possible assumptions, like
e.g. that a file must be opened for reading, or that memory must have been allocated
before. There are also plenty of comments inside functions. However, functions are
very long. The longest ones stretch over 398, 360, 257, 228, 210, 210, and 200 lines, not
counting the initial comments. Even though some of those lines are comment lines,
understanding such code is very difficult and time consuming.

We wanted to make the code as efficient as possible, at the same time exploring var-
ious representations of automata. As differences between particular representations
are small, but manifest themselves in different parts of the programs, this resulted
in interwoven conditional compilation directives. Some of those directives exist only
to handle historical formats that have no advantages in comparison with modern
ones. Long functions are difficult to understand, but long functions with conditional
compilation directives are an order of magnitude more difficult.

94



10 A new library for construction of automata

2.2 Memory requirements

One of the features that made the package popular was the use of incremental con-
struction algorithms. Contrary to other algorithms used at that time, they had very
low memory requirements.

When new features were added to the package, especially the features that had
to be introduced during construction, new vectors or new fields in vectors were in-
troduced to handle them. That increased memory requirements of the construction
programs fsa_build and fsa_ubuild. It seemed at that time that the size of possible
dictionaries was quite limited, and small increases in vocabulary would be more than
compensated by cheap memory of modern computers. One of the main complaints
during our Ph.D. defence, that was also voiced many times afterwards at various con-
ferences, was: “Why are you doing this?! Memories are so big and cheap, and they
are getting bigger and cheaper, it is easier to write an application for a grant than to
learn to use new software”

It turned out that data grows faster then memories. Researchers at the University
of Technology in Brno complained that their dictionaries (based on Wikipedia) were
to big to be constructed even in huge virtual memory.

2.3 Stand-alone programs

The package was written as a set of stand-alone programs. Library fadd written in
Groningen at the request of Gertjan van Noord contains functions of most of the
programs of the fsa package, but the automata construction programs fsa_build
and fsa_ubuilt were left out. They were the most difficult to re-implement, and it
seemed at that time that those functions were not really needed, as dictionaries are
constructed once for a very long time, and then used frequently. That assumption is
correct, but we want to write a package for construction of tree automata. The tree
automata are to be compressed, including their labels, and the way to do that is to use
finite-state automata. It is awkward to call external programs inside other programs,
so we need a library.

3 New package

The new library called fsacl has been in plans to a few years. Since ideas and good
will alone are not sufficient to write software, we had to wait till we get a little spare
time. The development began in December 2015, stopped after one month, and re-
sumed in mid July 2016.

3.1 Requirements

The new library:

« should offer both C++ and C interface in a similar way to fadd in order to
facilitate its use in various programming languages;

95



Jan Daciuk

« should implement at least two incremental construction algorithms;

« should implement automata representation version 5 from package fsa with
hash numbers;

« should also implement sparse matrix representation;
« should implement new representation based on (Daciuk & Weiss 2012);

« should use less memory than fsa_build and fsa_build during construction.

3.2 Present status

The library is under development. To test the library, two programs: nfsa_build
and nfsa_ubuild have been developed. They have roughly the same functions as
fsa_build and fsa_ubuild, respectively, from the fsa package. The main difference
between the new programs and the old ones is that various behavior achieved in old
programs by using different compile options is now controlled by different command-
line options. Those additional command-line options switch on and off various fea-
tures, like e.g. sorting transitions on frequency of their labels, or select representation
format version. Not all of those options are implemented in the current version of
the library.

Construction of automata from sorted and unsorted input has been implemented
and tested both with and without option “-0”, ie. with or without storing some
states inside other states. The constructed automaton can be read with programs
from the fsa package or by the fadd library. Only one representation version —
version number 5 (list representation of outgoing transitions, with STOP bit flags
marking last outgoing transitions of a state, with NEXT bit flag indicating that the
target of the present transition is located right after the transition, and without the
TAIL bit flag indicating that the remaining transitions of a state are stored in the
location specified by the following number). This is the most popular representation
in the fsa package, and the one that usually gives the best results. It is also the default
one. It is also implemented in the fadd library.

Constructing guessing automata is partially implemented; compile options GENER-
ALIZE and PRUNE_ARCS from the fsa package are missing. The code is not tested, so
it almost certainly contains errors.

Storing numbers for hashing has been implemented and tested. Various non-
essential compile options like PROGRESS (for showing the progress of construction),
STATISTICS (for showing statistics on states, transitions, chains of states and tran-
sitions, etc.), and WEIGHTED (not really for weighted automata, but for producing al-
legedly better guessing automata) are not implemented. Memory is not de-allocated
as it should in a library.

Preliminary results show that nfsa_build is significantly faster and less memory-
efficient than fsa_build. The reason for that must be found by profiling and testing.
We have chosen to use linked lists of outgoing transitions. We wanted to achieve a
speed-up in adding an outgoing transition to a state, and we did that, but the field

96



10 A new library for construction of automata

used for linking takes additional memory that is not used in the fsa package. Our
suspicion is also that use of STL vectors is responsible for additional memory, as the
library allocates twice as much memory for a vector when it becomes full.

3.3 Additional issues

Good software cannot be written and just left alone. It must be distributed and main-
tained. It means not only that there is someone who corrects errors when he or
she finds them. The software must either be a part of some bigger collections, e.g.
become a Linux package in some Linux distribution, or it must be available from a
fixed location, with a fixed e-mail address of the author/maintainer.

For a quarter of a century, the fsa package, and our other software packages (utr —
same as fsa but implemented with transducers), fadd library and other minor pieces
of software were available from ftp.pg.gda.pl — the FTP server of Gdansk Uni-
versity of Technology. The author’s address was either jandac@pg.gda.pl or jan-
dac@eti.pg.gda.pl, with both addresses working.

That pleasant constancy is gone. The FTP server is maintained by an incompetent
and even hostile crew. It was switched off without warning in the beginning of 2016
for several months, with complaints about its unavailability quietly ignored. Web
pages describing the software are hosted on the faculty web server. That server has
recently been taken over by the same crew that maintains the FTP server. It also has
new software for managing web pages, which works only partially. The old server is
still available, but it will be switched off at the end of August 2016 to force people to
use the new sever. Finally, the university decided that it should be located in an edu
domain, rather than in a geographical one (gda from Gdansk). To save costs, the old
domain (pg.gda.pl) will be removed. This will make redirection impossible, and it
will affect all addresses: web pages, the ftp server, e-mail addresses.

To provide constant addresses again, we decided to buy a domain and a place on
a commercial server. The domain jandaciuk.pl is already bought, and our software
is downloaded to the FTP server, and the web pages are installed. It turned out that
the commercial FTP server does not allow for anonymous FTP connections, so we
use the HTTP protocol instead.

3.4 Plans for the future
We plan to:

1. Implement missing functions and options (compile options implemented as
run-time options). The most urgent among those is a set of options and re-
lated functions that deal with construction of guessing automata. Guessing
automata can be created using the present version of the library, but they are
bigger than those created by programs fsa_build and fsa_ubuild from the
fsa package.

2. Significantly reduce memory use. This is one of the objectives for designing
this library.

97



Jan Daciuk

3. Implement representation format 10 of automata in the fsa package. This for-
mat is the same as format number 5 (already implemented,; it uses flags FINAL,
STOP, and NEXT) for annotations, and it uses sparse matrix representation for
words. At this point, the library will be able to completely replace the construc-
tion part of the fsa package for two most popular formats.

4. Implement a new representation format that gives much smaller automata
(measured in bytes) that can be constructed in shorter time, The representa-
tion will be similar to the one described in (Daciuk & Weiss 2012), but with a
modification that will make the construction faster.

We also consider moving construction of compressed language models from our
fadd library to this one.

References

Daciuk, Jan, Jakub Piskorski & Strahil Ristov. 2010. Natural language dictionaries
implemented as finite automata. In Carlos Martin-Vide (ed.), Scientific applications
of language methods. Imperial College Press.

Daciuk, Jan & Dawid Weiss. 2012. Smaller representation of finite-state automata.
Theoretical Computer Science 450. 10-21.

Hobbs, Jerry R., Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark
Stickel & Mabry Tyson. 1997. FASTUS: a cascaded finite-state transducer for ex-
tracting information from natural language text. In Emmanuel Roche & Yves Sch-
abes (eds.), Finite-state language processing. MIT Press.

Hopcroft, John E., Rajeev Motwani & Jeffrey D. Ullman. 2007. Introduction to automata
theory, languages and computation. 3rd edn. Pearson International Edition.

Nederhof, Mark-Jan. 2000. Practical experiments with regular approximation of
context-free languages. Computational Linguistics.

Roche, Emmanuel & Yves Schabes. 1995. Deterministic part-of-speech tagging with
finite-state transducers. Computational Linguistics 21(2). 227-253.

98



