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Aggregate-level studies of linguistic variation typically adopt an onomasiological per-
spective on linguistic variation. Recently, however, a number of corpus-based tech-
niques have been developed in the distributional semantics framework to detect seman-
tic shifts across large corpora (Sagi, Kaufmann & Clark 2011; Cook & Hirst 2011; Gulor-
dava & Baroni 2011). In this chapter, we apply one such technique to the corpus-based,
aggregate-level investigation of semasiological regional variation in Dutch. More specif-
ically, we use token-based vector space models, in which (a random subset of) the tokens
of a target word are represented as a ‘token cloud in vector space’. In order to compare
the use of a target word in two regional varieties of Dutch, viz. Netherlandic Dutch
and Belgian Dutch, we build a token cloud for each variety and superimpose both token
clouds. Next, we apply measures, which we call separation indices, and which quantify
to which extent the superimposed clouds exhibit non-overlapping areas (or areas with
less overlap). Such areas are of interest because they signal possible differences in the
(number of) senses or usage patterns of the word in both varieties. The purpose of these
separation indices is to quantify semasiological distances between language varieties and
by consequence to allow for a (dia)lectometric approach to the study of semasiological
variation. This chapter reports on a methodological pilot study that investigates the
merits of four candidate types of separation indices.

1 Introduction

The methods that were developed within the framework of dialectometry (Nerbonne
& Kretzschmar 2003) have been a rich source of inspiration for many different types
of studies into aggregate-level language variation, both within dialectometry sensu
stricto and in lectometry more in general — we use ‘lectometry’ as an umbrella
term for dialectometry, stylometry, sociolectometry, etc. In this chapter, we specif-
ically zoom in on corpus-based studies of regional and register variation that adopt
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a ‘lectometric approach’. A specific challenge in all corpus-based lectometric stud-
ies on lexical/grammatical variation is dealing with semantic differences. Whereas
in survey data of the type often used in dialectometric studies, the context in which
words/expressions are used by survey participants is kept constant, such consistency
does not apply to corpus materials. The contexts in which words are used in corpora
vary dramatically from one instance to another and issues related to e.g. polysemy
and vagueness are hard to address, especially when the corpora are large and manual
inspection of all usage instances is not an option.

Semantic vector space models, or simply vector space models or VSMs (Turney &
Pantel 2010), a technique that is often used in natural language processing in tasks
such as thesaurus extraction and word sense disambiguation, offer promising pos-
sibilities for semi-automatically accounting for lack of synonymy in corpus-based
studies of lexical/grammatical variation. For instance, Ruette et al. (2014) incorpo-
rate VSMs into a ‘lectometric framework’. In that study, in which an onomasiologi-
cal perspective is adopted, a weighting mechanism is installed that penalizes, in the
‘lectometric calculations’, data points that occupy a peripheral position according to
the semantic similarity scores that were derived from VSMs. This way the effect of
potentially problematic data points on the lectometric results is reduced.

In this chapter, rather than attempting to neutralize potential noise coming from
non-synonymy, we make non-synonymy, or rather, semasiological variability, the
topic of (lectometric) investigation, thus switching to a semasiological perspective.
VSMs play a crucial role in our approach. Using token-based VSMs, we build so-
called token clouds, for a specific target word, for two regional varieties of Dutch,
viz. Netherlandic Dutch and Belgian Dutch and we superimpose both token clouds.

Token clouds will be explained in more detail in Section 2. For the time being,
Figure 1 informally illustrates the concept. All panels in Figure 1 show token clouds
for the Dutch word monitor. In the middle panel we see a token cloud for Nether-
landic Dutch (NL), with individual points representing individual tokens. Proximity
between tokens is a proxy for semantic similarity of the usage contexts of the tokens.
In the right panel we see a token cloud for Belgian Dutch (BE). In the left panel both
clouds are superimposed. The example illustrates that there is an area where there
are only Belgian Dutch tokens (roughly coinciding with the bottom right quadrant
of the plots). Manual inspection of the tokens reveals that by and large the tokens in
this area are tokens where monitor has the meaning YOUTH LEADER, whereas in the
other parts of the plot, where the token clouds do overlap, most tokens have either the
meaning COMPUTER SCREEN or the meaning SCREEN OF A MEDICAL DEVICE.
As it turns out, in Netherlandic Dutch the word monitor lacks the meaning YOUTH
LEADER, which is exactly what is reflected in the presence of the non-overlapping
area.

Having built our token clouds, we then apply measures, which we call separa-
tion indices, and which quantify to which extent the superimposed clouds exhibit
non-overlapping areas (or areas with less overlap). As illustrated in the example in
Figure 1, such areas are of interest because they signal possible differences in the
(number of) senses or usage patterns of the word in both varieties. The purpose of

326



33 From dialectometry to semantics

superimposed NL and BE density of NL density of BE
‘monitor’ token clouds ‘monitor’ token cloud ‘monitor’ token cloud
A A
. .
e e e
A A
A A A
. .
w4 A o* " 24 w w4 A A
. - ! ° .
A o %' 00 LA . 0 A 0002 a
o A A ™ o~ A
5 Cakig. ; y : ‘
s . A. o TN ot s . . 3 = . s A g
R R
. o g A A .0c8 A
. o« f Y A . . - A
© 2 © @ f
ofa L4 . N
. Ay A . "3
. “ .
A
° A ° °

Figure 1: Example of two superimposed token clouds.

these separation indices is to quantify semasiological distances between language va-
rieties and by consequence to allow for a (dia)lectometric approach to the study of
semasiologic variation. This chapter reports on a pilot study that investigates the
merits of four candidate types of separation indices.

The structure of the chapter is as follows. In Section 2, we explain how the token
clouds are built and we describe four candidate types of separation indices. In Sec-
tion 3, we present results from a case study in which we explore to which extent
these separation indices yield sensible results. In Section 4, finally, we draw some
conclusions.

2 The method: token clouds and separation indices

In this section, we first explain how we build token clouds in vector space. Next, we
describe the different candidate types of separation indices that will be used in the
case study in the next section.

2.1 Building VSMs

The most commonly used kind of VSMs are so-called type-based VSMs. These VSMs
are matrices in which the usage, in the corpus, of each target word is summarized in
a single row. Columns represent so-called features. In the VSMs used in this chapter,
these features simply are words that occur in the vicinity of the target word. The
cells in the matrix express the frequency with which each target word co-occurs with
each feature, or rather, they contain so-called positive pointwise mutual information
values (PPMI) that are derived from the raw co-occurrence frequencies. PPMI values
express the ‘attraction’ between a target word and a feature.

The rationale then is that, given a large enough corpus, target words with similar
meanings tend to have similar row vectors. Therefore, distances between row vectors
(typically calculated as one minus the cosine of the angle between the two row vec-
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tors) can be used as a proxy for differences in meaning/usage. Table 1 illustrates the
structure of a type-based VSM (using English words). Only a few rows and columns
are shown, and the values in the cells are not shown. The idea would be that in a
good VSM the row vectors of car and vehicle would be much more similar to each
other than to the row vector of coffee.

Table 1: Part of a type-based VSM.

g
Q
~

dl‘ink
tI‘aﬁ'z\c
Wbee]

car

vehicle

coffee

In token-based VSMs, each instance (=token) of a word in the corpus, or at least
a representative number of such instances, has its own row. This is illustrated in
Table 2, using, as an example, tokens of the English word car (please ignore, for the
time being, that Table 2, contains tokens from two varieties). In token-based VSMs,
it would not be a good idea to simply use the words in the vicinity of the target
word as ‘atomic’ features (i.e. as columns). Since there are only a few context words
in each token, this would lead to very sparse, very uninformative row vectors for
the individual tokens. For instance, switching again to the monitor example from
the introduction, in such an ill-chosen approach the fact that one monitor token has
the word kinderen ‘children’ in its context and another monitor token has jongeren
‘youngsters’ in its context, would not lead to the desired effect of their two row vec-
tors somehow resembling each other (since kinderen and jongeren would be treated
as unrelated ‘atomic’ features).

What we do instead to build the row vector of a token in a token-based VSM, is
for each of the context words in that token, we first retrieve its type vector, i.e. we
retrieve its row vector from a type-based VSM. In order to clarify this, let us use the
notation Cs for the context words that appear in a specific token. For instance, in
the token ...I park my car in the second garage ..., with car the target word, words
such as park, second, and garage would be Cs. It is of these Cs that we retrieve the
type vectors. Let us, in the present context, use the notation CCs for the features that
are used in the type vectors of the Cs. In other words, the CCs are the (type-based)
features of the (token-specific) Cs of the target word.

Having retrieved the type vectors of all Cs in a token, we add up these type vectors
to build the token representation of the token (so that the CCs will become the fea-
tures of the token-based VSM). For instance, the row representation of the example
token just given would be the sum of the type vectors of park, second, garage, etc. It
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should be added, though, that we use a weighted sum, in order to take into account
that some Cs (e.g. park, garage) are more important than others (e.g. second). More
specifically, the row vector of a token is the weighted sum of the type vectors of all
its Cs, with the weights being the importance of the Cs, measured as the type-based
‘attraction’” (PPMI) between the target word and the C. A less concise description of
this procedure, which is a slightly modified version of Schiitze (1998), can be found
in Heylen et al. (2015). Importantly, returning once again to the monitor example,
in this approach, the row vector of a token with the C kinderen ‘children’ in it and
the row vector of a token with the C jongeren ‘youngsters’ in it will tend to be sim-
ilar, because the type vectors of these two important Cs can be expected to be very
similar.

The above describes how token-based VSMs for a single variety can be built. Super-
imposed token-based VSMs for two varieties, as illustrated in Table 2, are a straight-
forward extension. This time we use one type-based VSM for each variety (both
having the same features) and we use a sufficiently large sample of tokens from both
varieties. With this, we create a matrix, as illustrated in Table 2, that has as its rows
the tokens form both varieties. The row vectors are calculated as before, with this
complication that that for building the row for a token from variety A, information is
retrieved from the type-based VSM for A, and for building the row for a token from
variety B, information is retrieved from the type-based VSM for B.

Table 2: Part of a matrix with two superimposed token-based VSMs for the target
word car.

g & § 9

car 1 from US
car 2 fromUS ... ... .. ..
car 3 from US  weighted sum of Cs of car 3 from US

car 1 from UK
car 2 from UK

2.2 Token clouds in original vector space and reduced vector space

We speak of token clouds, because you can think of the information in a token-based
VSM as a cloud of points (the tokens) sitting in a high-dimensional space, in which
each CC is a dimension and the PPMI values are coordinates. In spite of the high-
dimensional nature of such a space, it is straightforward to calculate (cosine-based)
distances between the points (=tokens). However, if we want to be able to visualize
the tokens cloud, we need to reduce the number of dimensions. We solve this by
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applying non-metric MDS to the original matrix (in which we used cosine-based
distances), in order to derive from it a 2D-simplication (in which we use Euclidean
distances). We call this two-dimensional space the ‘reduced vector space’, as opposed
to the ‘original vector space’ we started out with. It is this ‘reduced vector space’ that
is represented in plots such as the ones in Figure 1.

2.3 Separation indices

In the case study in the next section, we will test four types of separation indices,
which, as explained before, are meant to quantify the degree to which there are non-
overlapping areas in the superimposed token clouds. We call the first two measures
‘global’ indices, because they assess to which extent the clouds as a whole tend to
consist of ‘larger areas’ that lack overlap. The final two measures, on the other hand,
are ‘local’ indices; they assess to which extent, at a more fine-grained level, there are
smaller areas that lack overlap.

The first ‘global’ index, DR, which stands for distance ratio, is a slightly modified
version of the clustering index proposed in McClain & Rao (1975). For each item (=to-
ken), we calculate A the mean distance from the item to other items from the same
class (=variety) and B the mean distance from the item to items from the other vari-
ety. The separation index for the item is B/ A. The separation index for the complete
token cloud is the mean separation index of the items.

The second ‘global’ index, SIL, stands for silhouette width (Rousseeuw 1987). For
each item, we calculate A the mean distance from the item to items from its own
class (=variety), and B the mean distance from the item to the other class (=variety).
The separation index for the item is (B — A)/max (A, B). The separation index for
the complete token cloud is the mean separation index of the items.

The first ‘local’ index, SCP, stands for (smallest) same class path’. This index takes
a parameter k by means of which you specific the level of granularity you want to
inspect (with smaller k corresponding to more ‘local’ patterns). It expresses how easy
it is to draw paths that connect k£ + 1 same-variety tokens while encountering as few
other-variety tokens as possible. The separation index for an item is calculated as
the separation score of the shortest path of length k that connects that item to other
items from the same class (=variety); the separation score of this path is the mean of
the separation score of the steps it consists of; the separation score of any step from
A to B is one divided by the rank of the distance of B. The separation index for the
complete token cloud is the mean separation index of all items. The explanation of
this index sounds complicated, and needs further explantaion, but the idea is simple.
In order to determine the separation index for a token, the procedure tries to build
a path that connects this token to k other tokens of the same variety (in one chain,
stepping for A to B, from B to C, etc.) and that is as small as possible. The smaller
the path that is found, the higher the separation index for the token. A path is small
if the average length of its the individual steps is small. How small an individual step
from A to B is, is determined by how many tokens from the other variety are closer
to A than B is. The fewer such other-variety tokens there are, the smaller the step,
and the higher its separation score. For instance, if there are no other-variety tokens
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that are closer to A than B is, then the distance of B has rank 1 and therefore the
separation score of the step going from A to B is 1/1, which is 1, and which is the
highest possible separation score. If there is one other-variety token closer to A than
B is, then the distance of B has rank 2 and the separation score of the step from A
to B is 1/2. If there are two other-variety tokens closer to A than B is, then the rank
is 3 and the separation score is 1/3. Etc. In sum, and informally: a step is small (and
therefore its separation score is high) if it doesn’t cross much ‘territory occupied by
the other variety’. In a similar vain, the complete path of length k of a token is small
(and therefore the token’s separation index is high) if the path doesn’t cross much
‘territory occupied by the other variety’.

The second ‘local’ index is KNN, which stands for k nearest neighbours. This too
is a measure that takes a parameter k by means of which one can specify a level of
granularity. For each item (=token) we calculate the proportion of same-class items
(=same-variety items) among its k nearest neighbours; that proportion is the sepa-
ration index for the item. The separation index for the complete token cloud (i.e. all
items) is the mean separation index for the items.

Although these four types of separation indices (DR, SIL, SCP, KNN) have different
scales, they share a number of characteristics. Firstly, higher values indicate more
presence of non-overlapping areas (so a higher degree to which the varieties occupy
separate areas in the superimposed token clouds). Second, they take as their input the
distances between the tokens. Since we have distances between the tokens both for
the ‘original vector space’ and for the ‘reduced vector space’, we apply the separation
indices to both.

As a result, we end up with eight sets of separation index calculations, since we
have four types of separation indices, which we all apply to both the ‘original vector
space’ and to the ‘reduced vector space’. The empirical questions then are be to which
extent the results will be similar across the eight sets, and, if not, how they differ.

3 Case study

We have built token clouds for 42 words, 21 of which are mentioned in several lan-
guage advice resources (such as taaltelefoon.vlaanderen.be) as being used differ-
ently in Belgium and The Netherlands. For the other 21 words we found no such
claims, nor did we have any other reason to expect semasiological regional differ-
ences. Of the former 21 words, 7 are claimed, in the language advice literature, to
differ with respect to the (fixed) expressions or idioms that are often used in the two
varieties, and 14 are claimed to have different possible/popular senses in the two
varieties.
The following are the words that are included in the study:

« category no (no claims about differences found): appel, auto, ballon, bos, broek,
bureau, centrum, deur, dier, fruit, gebruiker, heling, kamer, kop, land, nacht, neus,
school, steun, stoel, verlof’;
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- category expr (expressions/idioms are claimed to differ): biecht, boontje, ge-
schenk, mosterd, mouw, straatje, vijg;

- category sense (senses are claimed to differ): academicus, bank, bolletje, kleedje,
kous, middag, monitor, pan, patat, poep, puntje, tas, vlieger, wagen.

For each of these words, we randomly collected 300 tokens from a large Belgian
newspaper corpus (LeNC=Leuven Nieuws Corpus; 1.2 billion words) and 300 tokens
from a large Netherlandic newspaper corpus (TwNC=Twente Nieuws Corpus; 500
million words), and we merged both sets in one token cloud. We used about 5000 CCs
(the intersection of the top 7000 high frequency words in LeNC and TwNC, minus the
top 100 high frequency words); the context window used for the type-based VSMs
was 4:4 (i.e. four words to the left and four to the right of the target word). The context
window for determining the Cs was 10:10. Of the candidate Cs, we only kept those
that were sufficiently important according to the type-based VSM of the variety the
token came from (LLR > 1 and PPM1I > 1) and that also occurred in the corpus
for the other variety. We dropped tokens without suitable Cs (typically retaining
about 500 tokens out of the original 600). Stress in the MDS solution that we used to
build the ‘reduced vector spaces’ varied from .15 to .28.

We then calculated the four separation indices (DR, SIL, SCP, and KNN), both for the
‘original vector space’ and for the ‘reduced vector space’. In the ‘local’ separation
indices SCP and KNN, k was set to 10 and an additional weighting procedure was used
(that we will not go into). Finally, the resulting eight sets of separation index results
were all standardized, in order to make it easier to compare them.

For all eight sets of separation index results, we ran a regression analysis with
standardized separation index as response variable and with word category as predic-
tor. Word category (cat) had the levels no, expr, and sense; we used dummy coding
(=treatment coding), with cat=no as reference value. Figure 2 shows, for all eight
regression models, the estimates for cat=expr and cat=sense (with 95% confidence
intervals).

A few observations can be made. First, in all eight models the average separation
index in the case of cat=expr is significantly higher than in the case of cat=no. Sec-
ond, in only a few models the average separation index in the case of cat=sense is
significantly higher than in the case of cat=no. More specifically, the latter effect is
least present in models in which ‘global’ separation indices are applied to the ‘original
vector space’, and is most clearly present in model in which ‘local’ separation indices
are applied to the ‘reduced vector space’.

After obtaining these results, we replicated the case study four times, with the
same corpora and the same words, but each time taking other random subsets of
tokens. Each time, the results were very similar; the aforementioned observations
were robust across all replications.
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('model 1, index=DR, space=original ) cat=expr ] —_—
(' model 1, index=DR, space=original ) cat=sense —_——
( model 2, index=SIL, space=original ) cat=expr —_————
(' model 2, index=SIL, space=original ) cat=sense ] —_—
( model 3, index=SCP, space=original ) cat=expr —_—
( model 3, index=SCP, space=original ) cat=sense j —_——
( model 4, index=KNN, space=original ) cat=expr —_————
( model 4, index=KNN, space=original ) cat=sense ] —_——
(' model 5, index=DR, space=reduced ) cat=expr j —_—
(' model 5, index=DR, space=reduced ) cat=sense —_——
(' model 6, index=SIL, space=reduced ) cat=expr —_—
( model 6, index=SIL, space=reduced ) cat=sense ] —_—
(' model 7, index=SCP, space=reduced ) cat=expr j —_—
( model 7, index=SCP, space=reduced ) cat=sense —_——
( model 8. index=KNN, space=reduced ) cat=expr —_——
(' model 8, index=KNN, space=reduced ) cat=sense ] —_——

-1.0 -05 0.0 0.5 1.0 1.5 2.0

Figure 2: Estimates for cat=expr and cat=sense (with 95% confidence intervals) in 8
regression models, with reference level cat=no.

4 Conclusions

In this chapter, we explored the possibility of applying (dia)lectometric techniques
to the investigation of (aggregate-level) semasiological variation. For such a thing to
be possible, it is necessary to be able to quantify semasiological differences across
language variaties. In a methodological pilot study, we tested eight different ways
of quantifying semasiological differences. All approaches that were tested produced
sensible results with respect to the detection of regional differences at the level of
‘different (fixed) expressions or idioms’. Regional difference at the level of ‘different
(number of) senses’, on the other hand, proved harder to detect, with the approach
that applied ‘local’ separation indices to the ‘reduced vector space’ outperforming
the other approaches. The results suggest that the dimension reduction can be in-
strumental in the quantitative identification of semasiological patterns in the data.
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