
1

Abstract dependency trees

Table of Contents
Introduction ...................................................................................................................  1
ADT ............................................................................................................................. 1

Introduction ...........................................................................................................  1
Category ...............................................................................................................  3
Lexical nodes ........................................................................................................  4
Index nodes ...........................................................................................................  5
Reference nodes .....................................................................................................  6
Punctuation ...........................................................................................................  6
Separable Verb Prefixes ..........................................................................................  6

ADT formats .................................................................................................................  6
Prolog ..................................................................................................................  6
XML ....................................................................................................................  7

How to obtain ADT structures ..........................................................................................  8
ADT as Alpino output format ...................................................................................  8
ADT from DT .......................................................................................................  8

Bibliography ..................................................................................................................  8

Introduction
This document provides a description of the format of dependency structures that are used as the
input for the Alpino chart generator. Dependency structures describe grammatical dependency relations
between lexical items, and the constituents dominating over lexical items. Since dependency structures
for generation can contain less information than dependency trees that are produced as a side effect of
parsing, we call them abstract dependency trees (ADTs).

While different input formalisms have been proposed for sentence realization in the past, such as
minimal recursion semantics (MRS), we have chosen to use a different input format that describes the
grammatical dependencies of the to-be generated sentence. The rationale for this format is:

• ADTs can be derived from (Alpino) dependency trees with ease.

• Most other input formalisms would require rather extensive changes to the lexicon and grammar.

• Prior work with Alpino dependency trees has shown that (abstract) dependency trees provide
sufficient abstraction for tasks where a generation component is desired.

This document describes the format of ADTs, including the representation of ADTs as Prolog terms
and XML documents. The procedure for deriving an ADT from a normal Alpino dependency tree is
also described.

ADT is an abstraction of the dependency structure format of Alpino (and the Lassy corpora). The
Lassy Annotation Manual is therefore required in combination with the present document in order to
understand the representation in full detail.

ADT

Introduction
An abstract dependency is a directed acyclic graph that models the grammatical relations between
lexical items and categories built from lexical items. The generator creates realizations for abstract



Abstract dependency trees

2

dependency trees that describe at least one possible sentence. An abstract dependency tree can consist
of four node types:

• Category (interior) nodes.

• Lexical (leaf) nodes.

• Indexed nodes.

• Reference nodes.

Edges between nodes have a dependency label, where hd indicates the head of a grammatical relation.
Figure Figure 1, “Dependency tree for "De boeken kosten ons een klein fortuin"” shows a dependency
tree for the sentence "De boeken kosten ons een klein fortuin". For interior nodes, the dependency label
is shown as the first element, and the category as the second.

Figure 1. Dependency tree for "De boeken kosten ons een klein fortuin"

Possible dependency labels are listed in Table 1, “Dependency labels”. In the following sections, the
node types will be described in more detail.

Table 1. Dependency labels

Dependency label Description

app apposition

body body (with complementizer)

cmp complementizer

cnj conjunct

crd coordinator

det determiner

dlink discourse-link

dp discourse-part

hd head



Abstract dependency trees

3

Dependency label Description

hdf closing element of a circumposition

ld locative or directional complement

me measure phrase complement

mod modifier

mwp part of a multi-word-unit

nucl nucleus discourse unit

obcomp object of comparative

obj1 direct object

obj2 secondary object (indirect object, . . .)

pc prepositional complement

pobj1 provisional direct object

predc predicative complement

predm predicative modifier

rhd head of a relative clause

sat satellite discourse unit

se inherently reflexive complement

su subject

sup provisional subject

svp separable verb particle

tag discourse tag

vc verbal complement

whd head of wh-question

Category
All nodes are associated with a category. All possible categories are listed in table Table 2, “Category
labels”. Note that this is different from Alpino dependency structures, in which only interior nodes are
associated with a category.

Table 2. Category labels

Category label Description

ap adjective phrase

advp adverb phrase

ahi aan het-infinitive group

conj conjunction

cp phrase started by a subordinating conjunction

detp word group with a determiner as the head

du discourse unit

inf bare infinitive group

np noun phrase

oti om te-infinitive-group

ppart passive/perfect participle

pp prepositional phrase



Abstract dependency trees

4

Category label Description

ppres present participle group

rel relative clause

smain declarative sentence (verb at the second position)

ssub Subordinate clause (verb final)

svan van-sentence

sv1 verb-initial sentence (yes/no question, imperatives)

ti te-infinitive group

whrel relative clause with embedded antecedent

whsub embedded question

whq WH-question

Lexical nodes
Lexical nodes are leaf nodes that provide an abstracted representation for (surface) words. As a
minimum a lexical node should specify:

• The word sense. The sense of a word is the root of a word, possibly with additional information to
select for a specific reading.

• An Alpino part of speech tag.

• A set of attribute/value pairs.

Part of speech tags and possible attributes are discussed in more detail below.

Alpino part of speech tags

Table Table 3, “POS tags” lists all possible Alpino part of speech tags for lexical items.

Table 3. POS tags

Tag Meaning

adj Adjective

adv Adverb

comp Complementizer

comparative Comparative

det Determiner

fixed Fixed part of a fixed expression

name Name

noun Noun

num Number

part Particle

pron Pronoun

prep Preposition

punct Punctuation

verb Verb

vg Conjunction



Abstract dependency trees

5

Attributes

In addition to the Alpino part of speech tag, some additional information is normally required to
determine the semantics embodied by an ADT. In particular, the number for nouns, and the tense and
inflection for verbs should be known.

• The number of a noun may be specified with the rnum attribute, which can have one of the following
values: sg, pl. If the attribute is not specified, the generator will attempt to produce both singular
and plural variants for this noun.

• The tense of the (finite) verb should be specified with the tense attribute, which can have one of
the following values: present, past, subjunctive. If the attribute is not specified, the generator will
attempt to produce both present and past tense, but not subjunctive.

• The sentence type can be specified using the attribute stype associated with the head of the sentence
(the finite verb). Possible values are ynquestion, whquestion, declarative, imparative, topic_drop. If
the attribute is not specified, the generator will attempt to generate any sentence type.

• Pronominals can be associated with the attributes per, def and refl to indicate person, reduction,
definiteness and reflexiveness. The attribute def has values def, indef. The attribute per has values
fir, je, thi, u, u_thi. The attribute refl has a single possible value refl. The attribute wk has a single
attribute yes to indicate that the pronominal is in reduced form (as in we versus wij, me versus mij,
etc.). If the attributes are not given, the generator will attempt to generate all consistent pronominals.

• Adjectives can be associated with the attribute aform with values base, compar and super to
differentiate neutral, comparative and superlative adjectives. If the attribute is not given, the
generator will attempt to generate with any of the forms.

• The attribute pron=true can be associated with determiners to distinguish, for example, iedere and
ieders. If the attribute is not specified, the generator will only use lexical entries which do not have
pron=true.

• Names can be associated with the attribute neclass with values 'LOC', 'PER', 'ORG', and 'MISC' .
Unfortunately, the single quotes are currently part of the value.

• The attribute personalized=true is used to distinguish nominalized adjectives as in "de snelste"
versus "de snelsten". If the attribute is not given, then only lexical entries are used by the generator
which do not have personalized=true.

• The attribute iets=true is associated with adjectives to distinguish "iets lekkers" from "lekkere iets".
If the attribute is not given, then only lexical entries are used by the generator which do not have
iets=true.

Currently, the category, relation name, and postag must be specified for any category.

Some attributes need to be specified in the input, in order that Alpino will allow corresponding lexical
entries to be considered for generation. These attributes are:

iets
personalized
pron

TODO: table of attributes with allowed values

TODO: table of attributes with default values

Index nodes
Indexed nodes are nodes associated with a specific index so that the node can be referred to by a
reference node. For instance, in the sentence Ik heb de trein gemist both ik-heb and ik-gemist have a



Abstract dependency trees

6

subject-head relation, while gemist is the head of a vc of heb. To allow for such representations, co-
indexation is required.

Reference nodes
Reference nodes only have an index, and no additional content nor sub-structure. The additional content
can be found at the Index node with the same index.

Punctuation
The current assumption is, that no punctuation is specified in the ADT. The generator will add a
minimum amount of obligatory punctuation for a given ADT.

Separable Verb Prefixes
To allow for an abstract description of verbs that have a separable particle, it is allowed to omit particles
with the svp relation in an ADT. If such particles are not included as nodes in the ADT, the generator
will attempt both to generate sentences with a separate particle as in ik bel hem op and a sentences in
which the particle is not separated as in omdat ik hem opbel.

ADT formats

Prolog
An ADT can be stored as a Prolog term that consists of recursive tree terms. The basic format is:

tree(Relation,Daughters)

Where Relation is a relation term, and Daughters is a list of daughter nodes, or the empty list for leaf
nodes. A relation has the following form:

r(Type,Label)

Type indicates the type of relation, such as su, obj1, or mod. The label comes in four types: interior
nodes, leaf nodes, index nodes and reference nodes. An interior node uses a p/1 term, for instance,

tree(r(vc,p(ppart)),[...])

is a node of the category ppart with a vc relation.

Lexical nodes use a adt_lex/5 term as their label:

adt_lex(Cat,Root,Sense,PosTag,Attributes)

Here the category, root, sense, POS tag, and attributes of a lexical item are noted. The sense of a
lexical item can contain additional information about a lexical item to select for a specific reading. For
instance, for words with fixed parts, the fixed parts are often listed in the sense. E.g. the sense of rood
aanlopen is rood-loop_aan. The sense can be omitted by replacing it with a variable (e.g., _).

This is an example of a lexical node:

tree(r(hd,adt_lex(np,trein,trein,noun,[rnum=sg])),[])

This describes a noun with the root trein and an attribute (rnum=sg) with the head (hd) relation.

An index node is represented as:

i(Number,Label)



Abstract dependency trees

7

where Label is an interior node or a leaf node.

Reference nodes are represented by

i(Number)

For instance, we can refer to

i(1,adt_lex(ik,ik,pron,[per=fir,rnum=sg,def=def]))

with:

i(1)

Combined, we can construct ADTs as Prolog terms for all grammatical sentences. E.g., the ADT term
for the sample discussed above is:

tree(r(top,p(top)),[
 tree(r(--,p(smain)),[
  tree(r(su,i(1,adt_lex(ik,ik,pron,
    [per=fir,rnum=sg,def=def]))),[]),
  tree(r(hd,adt_lex(heb,heb,verb,
    [stype=declarative,tense=present])),[]),
  tree(r(vc,p(ppart)),[
   tree(r(su,i(1)),[]),tree(r(obj1,p(np)),[
    tree(r(det,adt_lex(de,de,det,[])),[]),
    tree(r(hd,adt_lex(trein,trein,noun,[rnum=sg])),[])
   ]),
   tree(r(hd,adt_lex(mis,mis,verb,[])),[])
  ])
 ])
])

XML
ADTs can also be represented as XML documents to allow for easy querying and manipulation outside
the Alpino environment.

The dependency tree is represented in XML as a recursive structure of node elements. Each node has
an identifier (id) and relation (rel). Category nodes have a cat attribute that specifies the category. For
instance:

<node cat="ppart" id="4" rel="vc">
 ...
</node>

Every lexical node has the root, sense, and postag attributes for respectively describing the word root,
sense, and part of speech tag. E.g.:

<node gen="de" id="8" num="sg" cat="np" pos="noun" rel="hd" root="trein"
  sense="trein" type="adt_lex"/>

Lexical nodes have other attributes, as described in the previous sections. For instace, here the num
and gen attributes are also listed for the noun number and gender.

A node can be co-indexed by adding the index attribute to a lexical node:

<node id="2" index="1" root="ik" sense="ik" [...] />

The referring node also contains an index attribute, but no other information specific to a lexical node.
For example:



Abstract dependency trees

8

<node id="5" index="1" rel="su"/>

As an example of a full ADT, we include an ADT for the same sentence used in the Prolog ADT:

<?xml version="1.0" encoding="ISO-8859-1"?>
<alpino_adt version="1.3">
  <node cat="top" id="0" rel="top">
    <node cat="smain" id="1" rel="--">
      <node def="def" id="2" index="1" rnum="sg" cat="np"
        per="fir" pos="pron" rel="su" root="ik" sense="ik"/>
      <node id="3" pos="verb" rel="hd" root="heb" sense="heb" tense="present"/>
      <node cat="ppart" id="4" rel="vc">
        <node id="5" index="1" rel="su"/>
        <node cat="np" id="6" rel="obj1">
          <node id="7" pos="det" rel="det" root="de"
            sense="de"/>
          <node id="8" rnum="sg" pos="noun" rel="hd" root="trein" sense="trein"/>
        </node>
        <node id="9" pos="verb" rel="hd" root="mis" sense="mis"/>
      </node>
    </node>
  </node>
</alpino_adt>

How to obtain ADT structures
There are two approaches. First, you can take a dependency structure, as produced by Alpino, and
convert it to a ADT (using Alpino). Second, you can parse sentences with Alpino, and request an ADT
as output. The format of the ADT is either Prolog or XML - as explained in a previous section.

ADT as Alpino output format
The Alpino option end_hook=adt_prolog will generate an ADT in Prolog format for every parse.

Likewise, the Alpino option end_hook=adt_xml will generate an ADT in XML format.

As a special case, the option end_hook=gen_suite(best_score) can be used to generate an ADT for the
parse which resembles most the gold standard parse for the input sentence (obviously this assumes that
we are parsing sentences for which the gold standard parse is available). The ADT uses the Prolog
format in this case.

ADT from DT
This is currently not functioning properly. Perhaps this is not such a good idea anyway.

Bibliography
[lassyann] Gertjan van Noord, Ineke Schuurman, and Gosse Bouma, Lassy Syntactische Annotatie, http://

www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf

http://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
http://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf

	Abstract dependency trees
	Table of Contents
	Introduction
	ADT
	Introduction
	Category
	Lexical nodes
	Alpino part of speech tags
	Attributes

	Index nodes
	Reference nodes
	Punctuation
	Separable Verb Prefixes

	ADT formats
	Prolog
	XML

	How to obtain ADT structures
	ADT as Alpino output format
	ADT from DT

	Bibliography

