
Alpino: Wide-coverage Computational Analysis of Dutch

Gosse Bouma, Gertjan van Noord, and Robert Malouf

Alfa-informatica
Rijksuniversiteit Groningen

Abstract

Alpino is a wide-coverage computational analyzer of Dutch which aims at accurate, full,
parsing of unrestricted text. We describe the head-driven lexicalized grammar and the lex-
ical component, which has been derived from existing resources. The grammar produces
dependency structures, thus providing a reasonably abstract and theory-neutral level of lin-
guistic representation. An important aspect of wide-coverage parsing is robustness and
disambiguation. The dependency relations encoded in the dependency structures have been
used to develop and evaluate both hand-coded and statistical disambiguation methods.

1 Introduction

For English, tremendous progress has been made in the area of wide-coverage
parsing of unrestricted text. Many of the proposed systems are statistical parsers,
but systems based on a hand-written grammar exist as well. The aim of Alpino1 is
to provide computational analysis of Dutch with coverage and accuracy compara-
ble to state-of-the-art parsers for English.

The Alpino grammar (described in more detail below) is a lexicalized gram-
mar in the tradition of constructionalist Head-driven Phrase Structure Grammar
(Pollard and Sag 1994, Sag 1997). The grammar consists of hand-written, lin-
guistically motivated rules and lexical types. To evaluate the coverage and disam-
biguation component of the system, a testbench of syntactically annotated material
is absolutely crucial. Given the current lack of such material for Dutch, we have
started to annotate corpora with dependency structures. Dependency structures
provide a convenient level of representation for annotation, and a fairly neutral
representation for further processing. The annotation format is taken from the
project Corpus Gesproken Nederlands (Corpus of Spoken Dutch) (Oostdijk 2000).
The construction of dependency structures in the grammar and our treebanking ef-
forts are described in section 4. Both the lexicalist nature of the Alpino grammar
and the use of dependency structures imply that lexical items must be associated
with detailed valency information. For the Alpino lexicon we have extracted this
information from the Celex and Parole lexical databases (section 3).

In section 5 we describe Alpino’s parsing architecture. Section 6 describes
a variety of disambiguation strategies which have been integrated in Alpino. In
addition, we report on a number of preliminary disambiguation experiments. We
conclude with some remarks on future work.
1Alpino is being developed as part of the NWO PIONIER project Algorithms for Linguistic Processing,
www.let.rug.nl/˜vannoord/alp

2 Gosse Bouma, Gertjan van Noord, and Robert Malouf

2 Grammar

The Alpino grammar is an extension of the successful OVIS grammar (van Noord,
Bouma, Koeling and Nederhof 1999, Veldhuijzen van Zanten, Bouma, Sima’an,
van Noord and Bonnema 1999), a lexicalized grammar in the tradition of Head-
driven Phrase Structure Grammar (Pollard and Sag 1994). The grammar formal-
ism is carefully designed to allow linguistically sophisticated analyses as well as
efficient and robust processing.

In contrast to earlier work on HPSG grammar rules in Alpino are relativey de-
tailed. However, as pointed out in Sag (1997), by organizing rules in an inheritance
hierarchy, the relevant linguistic generalizations can still be captured. The Alpino
grammar currently contains over 100 rules, defined in terms of a few general rule
structures and principles. The grammar covers the basic constructions of Dutch
(including main and subordinate clauses, (indirect) questions, imperatives, (free)
relative clauses, a wide range of verbal and nominal complementation and modifi-
cation patterns, and coordination) as well as a wide variety of more idiosyncratic
constructions (appositions, verb-particle constructions, PP’s including a particle,
NP’s modified by an adverb, punctuation, etc.). The lexicon contains definitions
for various nominal types (nouns with various complementation patterns, proper
names, pronouns, temporal nouns, deverbalized nouns), various complementizer,
determiner, and adverb types, adjectives, and 36 verbal subcategorization types.

The formalism supports the use of recursive constraints over feature-structures
(using delayed evaluation, van Noord and Bouma (1994)). This allowed us to in-
corporate an analysis of cross-serial dependencies based on argument-inheritance
(Bouma and van Noord 1998) and a trace-less account of extraction along the lines
of Bouma, Malouf and Sag (2001).

3 Lexical Resources

Accurate, wide-coverage parsing of unrestricted text requires a lexical component
with detailed subcategorization frames. For lexicalist grammar formalisms, the
availability of lexical resources which specify subcategorization frames is even
more crucial. In HPSG, for instance, phrase structure rules rely on the fact that
each head contains a specification of the elements it subcategorizes for. If such
specifications are missing, the grammar will wildly overgenerate.

We have used two existing lexical databases (Celex and Parole) to create a
wide-coverage lexicon with detailed subcategorization frames enriched with de-
pendency relations. Celex (Baayen, Piepenbrock and van Rijn 1993) is a large
lexical database for Dutch, with rich phonological and morphological information.
For use within the CGN project, this database has been extended with dependency
frames (Groot 2000). This version of the lexicon contains 11,800 verbal stems,
with a total of 21,800 dependency frames. By far the most frequent frames are
those for intransitive (4,100) and transitive (6,500) verbs. A fair number of frames
occurs more than 100 times, but 300 of the 650 different dependency frame types
in the database occur only once.

Alpino: Wide-coverage Computational Analysis of Dutch 3

Dependency Frame Overlap Celex Parole Total
only only

[SU:NP][OBJ1:NP] 1810 1211 240 3261
[SU:NP] 257 1697 42 1996
[SU:NP][PC:PP〈pform〉] 337 541 273 1151
[SU:NP][OBJ1:NP][PC:PP〈pform〉] 129 375 308 812
[SU:NP][VC:S〈subordinate〉] 103 136 103 342
[SUP:NP〈het〉][OBJ1:NP][SU:CP] 7 247 5 259
[SU:NP][OBJ2:NP][OBJ1:NP] 65 171 28 264
[SU:NP][SE:NP][PC:PP〈pform〉] 65 62 102 229
[SU:NP][SE:NP] 49 137 65 251
[SU:NP][VC:VP] 10 16 37 63

Table 1: Dependency Frames and the number of stems occurring with this frame in both
resources, in CGN/Celex only, in Parole only, and the total number of stems with this de-
pendency frame in the Alpino Lexicon.

The Dutch Parole lexicon2 comes with detailed subcategorization information,
including dependency relations. The Parole lexicon is smaller than Celex, with
3,200 verbal stems and a total of 5000 dependency frames. There are 320 different
dependency frame types, 190 of which occur only once.

Dependency frames for the Alpino lexicon have been constructed using the
dependency information provided by CGN/Celex, Parole, and by entering defini-
tions by hand. The latter has been done mostly for auxiliary and modal verbs:
a small class of high-frequent elements which are exceptional in a number of
ways. The CGN/Celex dictionary is very large. As the Celex database comes
with frequency information, we currently only include those lexical items whose
frequency is above a certain threshold. For verbal stems, this means that roughly
50% of the stems in Celex is included in the Alpino lexicon. All verbal stems from
the Parole lexicon with a dependency frame covered by the grammar are included.

Currently, for 28 different CGN/Celex dependency frames a definition in the
grammar has been provided. This covers over 80% of the verbal dependency
frames in the CGN/Celex database, 10,400 of which are sufficiently frequent to
be included in the Alpino lexicon. For 15 different dependency frames in the Pa-
role lexicon a definition in Alpino is present. Using these, we extract over 4,100
dependency frames (82% of the total number of dependency frames in the Parole
database). An overview of overlap and non-overlap for the most frequent frames
extractable from both sources is given in table 1. For transitive and intransitive
verbs, we see that over 85% of the stems in Parole are present in CGN/Celex as
well. For most other dependency frames, however, the overlap is generally much
smaller, and a significant portion of the stems present in Parole is not present in
2http://www.inl.nl/corp/parole.htm

4 Gosse Bouma, Gertjan van Noord, and Robert Malouf

Celex. This suggests that, for more specific subcategorization frames, both re-
sources are only partially complete, and that not even the union of both provides
exhaustive coverage.3

4 Dependency Structures

Within the CGN-project (Oostdijk 2000), guidelines have been developed for syn-
tactic annotation of spoken Dutch (Moortgat, Schuurman and van der Wouden
2000), using dependency structures similar to those used for the German Negra
corpus (Skut, Krenn and Uszkoreit 1997).

Dependency structures make explicit the dependency relations between con-
stituents in a sentence. Each non-terminal node in a dependency structure consists
of a head-daughter and a list of non-head daughters, whose dependency relation
to the head is marked. A dependency structure for (1) is given in figure 1. Con-
trol relations are encoded by means of co-indexing (i.e. the subject of hebben is
the dependent with index 1). Note that a dependency structure does not neces-
sarily reflect (surface) syntactic constituency. The dependent haar nieuwe model
gisteren aangekondigd, for instance, does not correspond to a (surface) syntactic
constituent in (1).

(1) Mercedes
Mercedes

zou
should

haar
her

nieuwe
new

model
model

gisteren
yesterday

hebben
have

aangekondigd
announced

Mercedes should have announced her new model yesterday

The Alpino grammar produces dependency structures compatible with the
CGN-guidelines. We believe this is a useful output format for a number of reasons.
First of all, annotating a text with dependency structures is relatively straightfor-
ward and independent of the particular grammatical framework assumed. Thus, a
dependency treebank can be used to debug and test various versions of the Alpino
grammar. Second, as we adopt the CGN-guidelines, a considerable amount of
annotated material will be available within the near future which can be used
for development and testing. Third, it has been suggested that dependency rela-
tions provide a convenient level of representation for evaluation of computational
grammar based on radically different grammatical theories (Carroll, Briscoe and
Sanfilippo 1998). Finally, statistics for dependency relations between head words
can be used to develop accurate models for parse-selection (Collins 1999); prelim-
inary experiments are described in section 6.

Grammatical Construction of Dependency Structures. To produce depen-
dency structures with the Alpino grammar, a new level of representation has been
added to the grammar. The attribute DT dominates a dependency structure, with
attributes for the lexical head (HD) and the various dependents. The value of a
dependent attribute can be a dependency structure or a leaf node consisting of a
3The less frequent verb stems in Celex (currently not included in Alpino) are almost exclusively as-
signed the intransitive or transitive dependency frame.

Alpino: Wide-coverage Computational Analysis of Dutch 5

s

su
1

noun
mercedes

hd
verb
zou

vc
vp

su
1

hd
verb

hebben

vc
vp

su
1

obj1
np

det
det

haar

mod
adj

nieuwe

hd
noun
model

mod
adv

gisteren

hd
verb

aangekondigd

Figure 1: Dependency structure for example (1).







































verb
phon 1

subcat

〈







np
case nom
dt 2






,







np
case acc
dt 3







〉

dt













hd

[

pos verb
word 1

]

su 2

obj1 3

























































































verb
phon 1

subcat

〈







np
case nom
dt 2






,







np
case dat
dt 3







〉

dt













hd

[

pos verb
word 1

]

su 2

obj2 3



















































Figure 2: Schematic lexical entry for transitive verbs taking a direct object (OBJ1), and for
transitive verbs taking an indirect object (OBJ2).

6 Gosse Bouma, Gertjan van Noord, and Robert Malouf

POS-tag and word only.
The construction of dependency structures is driven by the lexicon. For each

subcategorization type recognized in the lexical hierarchy a mapping between ele-
ments on the list-valued feature which specifies basic subcategorization properties
(SUBCAT) and attributes of DT is defined. Two examples are given in figure 2. The
leftmost feature structure exemplifies a finite, transitive verb. The value of DT of
the nominative NP on subcat is identical to the value of the SU dependent. Sim-
ilarly, the value of DT of the accusative NP on subcat is identical to the value of
the OBJ1 dependent. The rightmost feature structure exemplifies a finite, transitive
verb for which the object is assigned to the OBJ2 (secondary object) dependency
relation. In some cases, the addition of dependency structures leads to more fine-
grained distinctions. For instance, PP-arguments can be linked to PC (prepositional
complement) or LD (locative or directional complement), where the distinction be-
tween these two is primarily semantic in nature. Therefore, verbs taking a prepo-
sitional complement are assigned a subcategorization frame that differs from the
frame assigned to verbs taking such a LD complement.

In HEAD-COMPLEMENT structures, the DT attribute can simply be shared be-
tween head daughter and mother. In HEAD-MODIFIER structures, the dependency
structure of the modifier is added to the list-valued MOD dependent of the head.

Dependency Treebanks. For development and evaluation purposes, we have
started to annotate various sample text fragments with dependency structures.

The annotation process typically starts by parsing a sentence with the Alpino
grammar. This produces a (often large) number of possible analyses. The an-
notator picks the analysis which best matches the correct analysis. To facilitate
selection of the best parse among a large number of possibilities, the HDRUG en-
vironment has been extended with a graphical tool based on the SRI TreeBanker
(Carter 1997) which displays all fragments of the input which are a source of am-
biguity. By disambiguating these items (usually a much smaller number than the
number of readings), the annotator can quickly pick the most accurate parse.

For example, the sentence Jan zag het meisje ‘Jan saw the girl’ has (in prin-
ciple) two readings corresponding to the dependency structures in figure 3. The
readings of a sentence are represented as a set of sets of dependency paths, as in
figure 4. From these sets of paths, the parse selection tool computes a set of max-
imal discriminants which can be used to select among different analyses. In this
case, the path ‘s:hd = v zag’ is shared by all the analyses and so is not a useful
discriminant. On the other hand, the path ‘s:obj1:hd = n meisje’ does distinguish
between the readings but it is not maximal, since it is subsumed by the path ‘s:obj1
= np het meisje’ which is shorter and makes exactly the same distinctions. The
maximal discriminants are presented to the annotator, who may mark any of them
as either good (the correct parse must include it) or bad (the correct parse may not
include it). In this simple example, marking any one of the maximal discriminants
as good or bad is sufficient to uniquely identify the correct parse. For more com-
plex sentences, several choices will have to be made to select a single best parse.
To help the annotator, when a discriminant is marked as bad or good, the following

Alpino: Wide-coverage Computational Analysis of Dutch 7

s

hd
verb
zag

su
noun
jan

obj1
np

det
det
het

hd
noun

meisje

s

hd
verb
zag

su
np

det
det
het

hd
noun

meisje

obj1
noun
jan

Figure 3: Dependency structures for two readings of Jan zag het meisje.

s:hd = v zag s:hd = v zag
*s:su = np jan *s:su = np het meisje
*s:obj1 = np het meisje s:su:det = det het
s:obj1:det = det het s:su:hd = n meisje
s:obj1:hd = n meisje *s:obj1 = np jan

Figure 4: Dependency paths for Jan zag het meisje (* indicates a maximal discriminant).

inference rules are applied to further narrow the possibilities (Carter 1997):

• If a discriminant is bad, any parse which includes it is bad.

• If a discriminant is good, any parse which does not include it is bad.

• If a discriminant is only included in bad parses, it must be bad.

• If a discriminant is included in all the undecided parses, it must be good.

This allows users to focus their attention on discriminants about which they have
clear intuitions. Their decisions about these discriminants combined with the rules
of inference can then be used to automatically make decisions about less obvious
discriminants.

If the parse selected by the annotator is fully correct, the dependency structure
for that parse is stored as XML in the treebank. If the best parse produced by
the grammar is not the correct parse as it should be included in the treebank, the
dependency structure for this parse is sent to the Thistle editor.4 The annotator can
now produce the correct parse manually.

We have started to annotate various smaller fragments using the annotation
tools described above. The largest fragments consist of two sets of sentences ex-
4LT Thistle (Calder 2000), www.ltg.ed.ac.uk/software/thistle/, is an editor and display
engine for linguistic data-structures which supports XML.

8 Gosse Bouma, Gertjan van Noord, and Robert Malouf

tracted from the Eindhoven corpus (Uit den Boogaart 1975). The CDBL10 tree-
bank currently consists of the first 519 sentences of ten words or less from section
CDBL (newspaper text). The CDBL20 treebank consists of the first 252 sentences
with more than 10 but no more than 20 words.

Evaluation. Evaluation of coverage and accuracy of a computational grammar
usually is based on some metric which compares tree structures (such as recall and
precision of (labelled) brackets or bracketing inconsistencies (crossing brackets)
between test item and parser output). As is well-known, such metrics have
a number of drawbacks. Therefore, Carroll et al. (1998) propose to annotate
sentences with triples of the form 〈head-word, dependency relation, dependent
head-word〉. For instance, for the example in (1) we might obtain:

〈zou, su, mercedes〉 〈aangekondigd, obj1, model〉
〈hebben, su, mercedes〉 〈model, det, haar〉
〈aangekondigd, su, mercedes〉 〈model, mod, nieuwe〉
〈aangekondigd, mod, gisteren〉

Dependency relations between head-words can be extracted easily from the
dependency structures in our treebank, as well as from the dependency structures
constructed by the parser. It is thus straightforward to compute precision, recall,
and f-score on the set of dependency triples.

5 Robust Parsing

The initial design and implementation of the Alpino parser is inherited from the
system described in van Noord (1997), van Noord et al. (1999) and van Noord
(2001). However, a number of improvements have been implemented which are
described below.

The construction of a dependency structure on the basis of some input proceeds
in a number of steps, described below. The first step consists of lexical analysis. In
the second step a parse forest is constructed. The third step consists of the selection
of the best parse from the parse forest.

Lexical Analysis. The lexicon associates a word or a sequence of words with
one or more tags. Such tags contain information such as part-of-speech, in-
flection as well as a subcategorization frame. For verbs, the lexicon typi-
cally hypothesizes many different tags, differing mainly in the subcategoriza-
tion frame. For sentence (1), the lexicon produces 83 tags. Some of those tags
are obviously wrong. For example, one of the tags for the word hebben is
verb(hebben,pl,part sbar transitive(door)). The tag indicates
a finite plural verb which requires a separable prefix door, and which subcatego-
rizes for an SBAR complement. Since door does not occur anywhere in sentence
(1), this tag will not be useful for this sentence. A filter containing a number of
hand-written rules has been implemented which checks that such simple condi-

Alpino: Wide-coverage Computational Analysis of Dutch 9

tions hold. For sentence (1), the filter removes 56 tags. After the filter has applied,
feature structures are associated with each of these tags. Often, a single tag is
mapped to multiple feature structures. The remaining 27 filtered tags give rise to
89 feature structures.

An important aspect of lexical analysis is the treatment of unknown words. The
system applies a number of heuristics for unknown words. Currently, these heuris-
tics attempt to deal with numbers and number-like expressions, capitalized words,
words with missing diacritics, words with ‘too many’ diacritics, compounds, and
proper names.

If such heuristics still fail to provide an analysis, then the system guesses a tag
by inspecting the suffix of the word. A list of suffixes is maintained which predict
the tag of a given word. If this still does not provide an analysis, then it is assumed
that the word is a noun.

In addition to the treatment of unknown words, the robustness of the system is
enhanced by the possibility to skip tokens of the input. Currently this possibility is
employed only for certain punctuation marks. Even though punctuation is treated
both in the lexicon and the grammar, the syntax of punctuation is irregular enough
to warrant the possibility to ignore punctuation. For instance, quotation marks may
appear almost anywhere in the input. The corpus contains:

(2) De
The

z.g.
so-called

”
”

speelstraat
play-street

,
,
die
that

hier
here

en
and

daar
there

al
already

bestaat
exists

?
?

Apparently, the author intended to place speelstraatwithin quotes, but the
second quote is not present. During lexical analysis, tags are optionally extended
to include neighbouring words which are classified as ‘skipable’.

Creating Parse Forests. The Alpino parser takes the result of lexical analysis
as its input, and produces a parse forest: a compact representation of all parse
trees. The Alpino parser is a left-corner parser with selective memoization and
goal-weaking. It is a variant of the parsers described in van Noord (1997). We
generalized some of the techniques described there to take into account rela-
tional constraints, which are delayed until sufficiently instantiated (van Noord and
Bouma 1994).

As described in van Noord et al. (1999) and van Noord (2001), the parser can
be instructed to find all occurrences of the start category anywhere in the input.
This feature is added to enhance robustness as well. In case the parser cannot find
an instance of the start category from the beginning of the sentence to the end,
then the parser produces parse trees for large chunks of the input. A best-first
search procedure then picks out the best sequence of such chunks. Depending on
the application, such chunks might be very useful. In the past, we successfully
employed this strategy in a spoken dialogue system (Veldhuijzen van Zanten et
al. 1999).

10 Gosse Bouma, Gertjan van Noord, and Robert Malouf

beam cdbl10 cdbl20
accuracy (%) speed (msec) accuracy (%) speed (msec)

1 79.99 190 73.63 740
2 80.66 270 74.59 1470
4 81.11 350 75.07 2350
8 81.22 530 75.35 3630

16 81.36 590 75.31 5460
32 81.36 790 74.98 7880
∞ 81.36 640 - -

Table 2: Effect of beam-size on accuracy and efficiency of parse selection

Unpacking and Parse Selection. The motivation to construct a parse forest is
efficiency: the number of parse trees for a given sentence can be enormous. In
addition to this, in most applications the objective will not be to obtain all parse
trees, but rather the best parse tree. Thus, the final component of the parser consists
of a procedure to select these best parse trees from the parse forest.

In order to select the best parse tree from a parse forest, we assume a parse
evaluation function which assigns a score to each parse. In section 6 we describe
some initial experiments with a variety of parse evaluation functions. A naive
algorithm constructs all possible parse trees, assigns each one a score, and then
selects the best one. Since it is too inefficient to construct all parse trees, we have
implemented the algorithm which computes parse trees from the parse forest as
a best-first search. This requires that the parse evaluation function is extended
to partial parse trees. In order to be able to guarantee that this search procedure
indeed finds the best parse tree, a certain monotonicity requirement should apply
to this evaluation function: if a (partial) tree s is better than s′, then a tree t which
contains s should be better than t ′ which is just like t except it has s′ instead of s.
However, instead of relying on such a requirement, we implemented a variant of
a best-first search algorithm in such a way that for each state in the search space,
we maintain the b best candidates, where b is a small integer (the beam). If the
beam is decreased, then we run a larger risc of missing the best parse (but the result
will typically still be a relatively ‘good’ parse); if the beam is increased, then the
amount of computation increases too. Currently, we find that a value of b = 4 is a
good compromise between accuracy and efficiency. In table 2 the effect of various
values for b is presented for two development treebanks. The grammar assigns on
average about 33 parse trees per sentence for the cdbl10 corpus. This number
increases rapidly for longer sentences: for the cdbl20 corpus it is at least 340.5

5This is the average number after creating all parse trees for each sentence with a maximum of 1000
parse trees per sentence.

Alpino: Wide-coverage Computational Analysis of Dutch 11

6 Disambiguation

The best-first unpack strategy described in section 5 depends on a parse evaluation
function which assigns scores to (partial) parse trees. We have experimented with a
number of disambiguation techniques on the cdbl10 and cdbl20 development
treebanks described earlier.

Penalty rules. The simplest disambiguation method consists of hand-written
‘penalty’ rules which implement a variety of preferences. Each such penalty rule
describes a partial parse tree. For a given parse tree, the system computes how
often a sub-tree matches with a penalty rule, giving rise to the total penalty of that
parse. The following lists characterizes some of the penalty rules:

• complementation is preferred over modification

• subject topicalization is preferred over object topicalization

• long distance dependencies are dis-preferred

• certain rules are dis-preferred (e.g. rules which coordinate categories with-
out an explicit coordinator)

• certain lexical entries are dis-preferred (e.g. the preposition readings for
the words aan, bij, in, naar, op, uit, voor, tussen are
preferred over the adjectival, noun and/or verb readings).

• certain guesses for unknown words are preferred over others

As can be concluded from the preliminary results presented in table 3, it ap-
pears to be the case that about 60% of the disambiguation problem can be solved
using this very simple technique.

Dependency relations We also experimented with statistical models based on
dependency relations encoded in the dependency structure. The model assigns a
probality to a parse by considering each dependency relation. For this purpose,
dependency relations d are 5-tuples d = 〈wh, ph,r,wa, pa〉 where wh is the head
word, ph is the corresponding part-of-speech tag taken from a small set of part-of-
speechs {v,n,a,adv, p, . . .}, r is the name of the relation taken from a small set of
relation names {su,obj1,obj2,vc,mod,det, . . .}; wa is the argument word, and pa is
its part of speech.

The probability of a parse y given a sentence x might then be defined as:

p(y|x) =
1

Z(x) ∏
d∈y

p(r,wa, pa|wh, ph)

For disambiguation, the normalizing factor Z(x) is the same for every parse of a
given sentence and can be ignored.

12 Gosse Bouma, Gertjan van Noord, and Robert Malouf

Due to the occurrence of reentrancies, dependency structures are generally not
trees but graphs. Therefore, the product above gives poor results because it will
have an unjustified bias against such reentrancies (a reentrancy gives rise to an
additional dependency relation). For this reason, we have chosen to score parse
trees by determining the mean value of − log p for each tuple; this improved results
considerably. The probability of a dependency is calculated as follows:

p(r,wa, pa|wh, ph) = p(r|wh, ph)∗ p(pa|wh, ph,r)∗ p(wa|wh,wp,r, pa)

The three components are each calculated using a linear back-off strategy, where
the weights are determined by frequency and diversity (formula 2.66 of (Collins
1999)). The quantities we use for backing off are given in the following table:

back-off level p(r|wh, ph) p(pa|wh, ph,r) p(wa|wh,wp,r, pa)
1 p(r|ph) p(pa|ph,r) p(wa|wp,r, pa)
2 p(r) p(pa|r) p(wa|r, pa)
3 p(pa) p(wa|pa)
4 p(wa)

Because the size of the treebanks we have currently available is much too small
to estimate these quantities accurately, we have chosen to do our estimation using
unsupervised learning. We have parsed a large corpus (‘de Volkskrant’ newspaper
text: first four months of 1997) using the penalty rules described in the previous
section as our disambiguator. This corpus contains about 350,000 sentences and
6,200,000 words. We only used those sentences that the system could analyse as
a single constituent, and within a reasonable amount of time. This meant that we
could use the results of about 225,000 sentences. We estimated the quantity p
using the best parse (according to the penalty rules) for each of these sentences.
Collecting the 225,000 dependency structures took about one month of CPU-time
(using the high-performance computing cluster of the University of Groningen).

As can be concluded from table 3, such a model performs much better than the
baseline. Moreover, a combined model in which we simply add the rule penalties
to the quantity p performs better than either model in isolation.

Log-linear models. While the model described in the previous section offers
good performance and conceptual simplicity, it is not without problems. In partic-
ular, the strategies for dealing with reentrancies in the dependency structures and
for combining scores derived from penalty rules and from dependency relation
statistics are ad hoc. Log-linear models, introduced to natural language processing
by Berger, Della Pietra and Della Pietra (1996) and Della Pietra, Della Pietra and
Lafferty (1997), and applied to stochastic constraint-based grammars by Abney
(1997) and Johnson, Geman, Canon, Chi and Riezler (1999), offer the potential to
solve both of these problems. Given a conditional log-linear model, the probability
of a sentence x having the parse y is:

p(y|x) =
1

Z(x)
exp

(

∑
i

λi fi(x,y)

)

Alpino: Wide-coverage Computational Analysis of Dutch 13

cdbl10 cdbl20
technique precision recall f-score precision recall f-score
baseline 62.3 63.3 62.8 58.5 59.6 59.0
log linear 76.0 76.6 76.3 66.3 67.6 66.0
penalties 78.6 79.3 78.9 73.1 73.3 73.2
dependency rel’s 78.9 79.7 79.3 69.7 71.1 70.4
heur. + dep-rel’s 80.9 81.7 81.3 74.6 75.4 75.0
maximum 89.1 90.0 89.6 83.2 84.1 83.7

Table 3: Preliminary results on the cdbl10 and cdbl20 development treebanks for a
number of disambiguation techniques. The baseline row lists the percentages obtained if
we select for each sentence a random parse tree from the parse forest. The maximum row
lists the percentages obtained if we take for each sentence the best parse tree. These two
numbers thus indicate the lower and upper bounds for parse selection.

As before, the partition function Z(x) will be the same for every parse of a given
sentence and can be ignored, so the score for a parse is simply the weighted sum
of the property functions fi(x,y). What makes log-linear models particularly well
suited for this application is that the property functions may be sensitive to any
information which might be useful for disambiguation. Possible property func-
tions include syntactic heuristics, lexicalized and backed-off dependency relations,
structural configurations, and lexical semantic classes. Using log-linear models, all
of these disparate types of information may be combined into a single model for
disambiguation. Furthermore, since standard techniques for estimating the weights
λi from training data make no assumptions about the independence of properties,
one need not take special precautions when information sources overlap.

The drawback to using log-linear models is that accurate estimation of the pa-
rameters λi requires a large amount of annotated training data. Since such training
data is not yet available, we instead attempted unsupervized training from unanno-
tated data. We used the Alpino parser to find all parses of the 82,000 sentences with
ten or fewer words in the ‘de Volkskrant’ newpaper corpus. Using the resulting col-
lection of 2,200,000 unranked parses, we then applied Riezler et al.’s (2000) ‘Itera-
tive Maximization’ algorithm to estimate the parameters of a log-linear model with
dependency tuples as described in the previous section as property functions. The
results, given in table 3, show some promise, but the performance of the log-linear
model does not yet match that of the other disambiguation strategies. Current
work in this area is focused on expanding the set of properties and on using super-
vised training from what annotated data is available to bootstrap the unsupervised
training from large quantities of newspaper text.

14 Gosse Bouma, Gertjan van Noord, and Robert Malouf

7 Conclusions

Alpino aims at providing a wide-coverage, accurate, computational grammar for
Dutch. The linguistic component of the system consists of a lexicalist feature-
based grammar for Dutch, a wide-coverage and detailed lexicon, and a method for
constructing dependency treebanks. The parser contains a lexical analysis module
and a method for reconstructing parses from a parse forest using beam search,
which allows the linguistic knowledge to be applied efficiently and robustly to
unrestricted text. Finally, we have presented preliminary experiments aimed at
providing accurate disambiguation.

In the near future, we hope to address a number of additional issues. The
valency information in the lexicon is in many ways incomplete. We hope to obtain
a more complete lexicon by acquiring dependency frames from corpora. Lexical
analysis currently uses hand-written filter rules to reduce the number of tags for
lexical items. An obvious alternative is to use a corpus-based part-of-speech tagger
to arrive at the relevant filters. Finally, the work on disambiguation can profit
from the availability of more annotated material. This suggests that our efforts at
creating a dependency treebank may lead to improved results in the future.

References

Abney, S. P.(1997), Stochastic attribute-value grammars, Computational Linguis-
tics 23, 597–618.

Baayen, R. H., Piepenbrock, R. and van Rijn, H.(1993), The CELEX Lexical
Database (CD-ROM), Linguistic Data Consortium, University of Pennsyl-
vania, Philadelphia, PA.

Berger, A., Della Pietra, S. and Della Pietra, V.(1996), A maximum en-
tropy approach to natural language processing, Computational Linguistics
22(1), 39–72.

Bouma, G. and van Noord, G.(1998), Word order constraints on verb clusters in
German and Dutch, in E. Hinrichs, T. Nakazawa and A. Kathol (eds), Com-
plex Predicates in Nonderivational Syntax, Academic Press, New York,
pp. 43–72.

Bouma, G., Malouf, R. and Sag, I.(2001), Satisfying constraints on adjunction and
extraction, Natural Language and Linguistic Theory 19, 1–65.

Calder, J.(2000), Thistle and interarbora, Proceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLING), Saarbrücken,
pp. 992–996.

Carroll, J., Briscoe, T. and Sanfilippo, A.(1998), Parser evaluation: A survey and
a new proposal, Proceedings of the first International Conference on Lan-
guage Resources and Evaluation (LREC), Granada, Spain, pp. 447–454.

Carter, D.(1997), The TreeBanker: A tool for supervised training of parsed cor-
pora, Proceedings of the ACL Workshop on Computational Environments
For Grammar Development And Linguistic Engineering, Madrid.

Alpino: Wide-coverage Computational Analysis of Dutch 15

Collins, M.(1999), Head-Driven Statistical Models for Natural Language Parsing,
PhD thesis, University Of Pennsylvania.

Della Pietra, S., Della Pietra, V. and Lafferty, J.(1997), Inducing features of ran-
dom fields, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 19, 380–393.

Groot, M.(2000), Lexiconopbouw: microstructuur. Internal report Corpus Gespro-
ken Nederlands.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, S.(1999), Estimators for
stochastic “unification-based” grammars, Proceedings of the 37th Annual
Meeting of the ACL, College Park, Maryland, pp. 535–541.

Moortgat, M., Schuurman, I. and van der Wouden, T.(2000), CGN syntactische
annotatie. Internal report Corpus Gesproken Nederlands.

Oostdijk, N.(2000), The Spoken Dutch Corpus: Overview and first evaluation,
Proceedings of Second International Conference on Language Resources
and Evaluation (LREC), pp. 887–894.

Pollard, C. and Sag, I.(1994), Head-driven Phrase Structure Grammar, University
of Chicago / CSLI.

Riezler, S., Prescher, D., Kuhn, J. and Johnson, M.(2000), Lexicalized stochastic
modeling of constraint-based grammars using log-linear measures and em,
Proceedings of the 38th Annual Meeting of the ACL, Hong Kong, pp. 480–
487.

Sag, I.(1997), English relative clause constructions, Journal of Linguistics
33(2), 431–484.

Skut, W., Krenn, B. and Uszkoreit, H.(1997), An annotation scheme for free word
order languages, Proceedings of the Fifth Conference on Applied Natural
Language Processing, Washington, DC.

Uit den Boogaart, P. C.(1975), Woordfrequenties in geschreven en gesproken Ned-
erlands, Oosthoek, Scheltema & Holkema, Utrecht. Werkgroep Frequentie-
onderzoek van het Nederlands.

van Noord, G.(1997), An efficient implementation of the head corner parser, Com-
putational Linguistics 23(3), 425–456. cmp-lg/9701004.

van Noord, G.(2001), Robust parsing of word graphs, in J.-C. Junqua and G. van
Noord (eds), Robustness in Language and Speech Technology, Kluwer Aca-
demic Publishers, Dordrecht.

van Noord, G. and Bouma, G.(1994), Adjuncts and the processing of lexical rules,
Proceedings of the 15th International Conference on Computational Lin-
guistics (COLING), Kyoto, pp. 250–256. cmp-lg/9404011.

van Noord, G., Bouma, G., Koeling, R. and Nederhof, M.-J.(1999), Robust gram-
matical analysis for spoken dialogue systems, Journal of Natural Language
Engineering 5(1), 45–93.

Veldhuijzen van Zanten, G., Bouma, G., Sima’an, K., van Noord, G. and Bon-
nema, R.(1999), Evaluation of the NLP components of the OVIS2 spoken
dialogue system, in F. van Eynde, I. Schuurman and N. Schelkens (eds),
Computational Linguistics in the Netherlands 1998, Rodopi Amsterdam,
pp. 213–229.

