
Evaluation of the NLP Components of the OVIS2 Spoken
Dialogue System

Gert Veldhuijzen van Zanten1

Gosse Bouma2

Khalil Sima’an3

Gertjan van Noord2

Remko Bonnema4

1 IPO Eindhoven
2 Rijksuniversiteit Groningen
3 Universiteit Utrecht
4 Universiteit van Amsterdam

Abstract

The NWO Priority Programme Language and Speech Technology is a 5-year research pro-
gramme aiming at the development of spoken language information systems. In the Pro-
gramme, two alternative natural language processing (NLP) modules are developed in par-
allel: a grammar-based (conventional, rule-based) module and a data-oriented (memory-
based, stochastic, DOP) module. In order to compare the NLP modules, a formal evaluation
has been carried out three years after the start of the Programme. This paper describes the
evaluation procedure and the evaluation results. The grammar-based component performs
much better than the data-oriented one in this comparison.

1 Introduction

The NWO Priority Programme Language and Speech Technology is a 5-year re-
search programme aiming at the development of spoken language information sys-
tems. Its immediate goal is to develop a demonstrator of a public transport infor-
mation system, which operates over ordinary telephone lines. This demonstrator
is called OVIS, Openbaar Vervoer Informatie Systeem (Public Transport Informa-
tion System). The language of the system is Dutch.

In this Programme, two alternative NLP modules are developed in parallel: a
grammar-based (conventional, rule-based) module and a data-oriented (memory-
based, stochastic, DOP) module. Both of these modules fit into the system archi-
tecture of OVIS. They accept as their input word graphs produced by the automatic
speech recognition component, and produce updates which are passed on to the
pragmatic analysis component and dialogue manager.

A word graph (Oerder and Ney, 1993) is a compact representation for all se-
quences of words that the speech recogniser hypothesises for a spoken utterance.
The states of the graph represent points in time, and a transition between two states
represents a word that may have been uttered between the corresponding points in
time. Each transition is associated with an acoustic score representing a measure
of confidence that the word perceived there was actually uttered.

2 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

The dialogue manager maintains an information state to keep track of the infor-
mation provided by the user. An update expression is an instruction for updating
the information state. The syntax and semantics of such updates are defined in
Veldhuijzen van Zanten (1996). The sentence:

(1) Ik
I

wil
want

op
on

4
4

februari
February

van
from

Amsterdam
Amsterdam

naar
to

Groningen
Groningen

I want to travel from Amsterdam to Groningen on February 4th

is translated into the update expression:

(2) (user.wants.
(destination.(place.groningen);
(origin.(place.amsterdam));
(moment.at.(date.(month.february;day.4))))

which indicates that the destination and origin slots can be filled in, as well as the
moment.at slot.

In order to compare the NLP modules, a formal evaluation has been carried out
three years after the start of the Programme. In this paper, we first shortly describe
the two competing NLP components in section 2. The evaluation measures string
accuracy, semantic accuracy and computational resources. This is described in
more detail in section 3. The evaluation results are presented in section 4. On the
basis of these results some conclusions are drawn in section 5.

2 Two NLP Components

For detailed descriptions of the NLP components, the reader is referred to van
Noord et al. (1996a), van Noord et al. (1996b) and van Noord et al. (1999) for the
grammar-based NLP module. The data-oriented approach is documented in Scha
et al. (1996), Sima’an (1997) and Bod & Scha (1997).

2.1 Data Oriented Parsing

Research in the Data Oriented Parsing framework explores the hypothesis that
humans analyse new input by drawing analogies with concrete past language ex-
periences, rather than by applying abstract rules (Scha 1990).

In developing computational models embodying this idea, we have so far fo-
cused on one particularly straightforward instantiation of it: our algorithms anal-
yse new input by considering the various ways in which this input might be gen-
erated by a stochastic process which combines fragments of trees from an anno-
tated corpus of previously encountered utterances. Formally, these models may be
viewed as implementing extremely redundant Stochastic Tree Substitution Gram-
mars (STSG’s); the grammar rules are the subtrees extracted from the annotated
corpus (Bod 1992).

Evaluation of the NLP Components in OVIS2 3

An important parameter of models of this sort is the way in which the subtree-
substitution probabilities in the stochastic process are computed on the basis of the
subtree frequencies in the annotated corpus. All current models follow (Bod 1992)
in defining the probability of substituting a subtree t on a specific node as the
probability of selecting t among all subtrees in the corpus that could be substituted
on that node, i.e., as the number of occurrences of t divided by the total number of
occurrences of subtrees t′ with the same root node label as t:

(3) P (t) = |t|
∑

t′:root(t′)=root(t)|t
′|

Given these subtree substitution probabilities, the probability of a derivation
t1 ◦ · · ·◦ tn can be computed as the product of the probabilities of the substitutions
that it consists of

(4) P (t1 ◦ · · · ◦ tn) =
∏

iP (ti)

The probability of a parse tree is equal to the probability that any of its distinct
derivations is generated, which is the sum of the probabilities of all derivations of
that parse tree. Let tid be the i-th subtree in the derivation d that yields tree T ,
then the probability of T is given by:

(5) P (T) =
∑

d

∏

iP (tid)

An efficient polynomial algorithm for computing the Most Probable Derivation
is given in Sima’an (1996a). From a theoretical point of view we might expect the
computation of the Most Probable Parse to yield better disambiguation accuracies
than the Most Probable Derivation, and this expectation was confirmed by cer-
tain experiments. However, Sima’an (1996b) has shown that the problem of com-
puting the Most Probable Parse is not solvable by deterministic polynomial time
algorithms. For reasons regarding time-complexity, the most probable derivation
(MPD) is still the method of choice for a real-world application.

The algorithm presented in Sima’an (1996a) is implemented in the “Data Ori-
ented Parsing and DIsambiguation System” (DOPDIS). The algorithm extends a
well-known CFG parsing algorithm (the CKY algorithm) in a suitable way in or-
der to deal with STSG’s. The extension makes use of the fact that the paths in
a parse-tree, which is generated from an STSG derivation for a given sentence,
form a regular set that can be easily computed. By computing such sets, DOPDIS

generates exactly the necessary trees which the STSG dictates. On top of this
mechanism, DOPDIS computes both the most probable derivation and the proba-
bility of an input sentence. The construction operates in time-complexity which is
cubic in sentence length and linear in STSG size, which is a good achievement in
parsing tree grammars (existing tree-parsing techniques have complexity which is
square in grammar size).

The extension to parsing and disambiguating word graphs maintains the same
time and space complexity (where instead of sentence length here the complexity
concerns the numbers of nodes i.e. states the word graph contains). DOPDIS com-
putes the so called Most Probable intersection-Derivation of a word graph and the

4 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

DOP STSG. An intersection-derivation (i-derivation) is a pair 〈string , derivation〉
where string is the string of words on a path in the input word graph, and
derivation is an STSG derivation for that string. The probability of the i-derivation
is computed through a weighted product of the probabilities on the path in the
word graph and the STSG-derivation probability. The probabilities of the word
graph paths are obtained from the speech-recognisers likelihoods by a normalisa-
tion heuristic. The probabilities resulting from this heuristic combine better with
the DOP probabilities than raw speech recogniser likelihoods. The issue of scaling
the likelihoods of the speech-recogniser in a well-founded way is still under study.
The current method divides the likelihood of every transition by a normalisation
factor that is computed from the word graph.

An extension to semantic interpretation. In van den Berg, Bod and Scha
(1994), an extension of the model to semantic interpretation is presented. A first
implementation of this extension was described in Bonnema (1996). A DOP model
as described above can be extended from just syntactic, to semantic analysis, by
augmenting the trees in the tree-bank with semantic rules. These rules indicate,
for each individual analysis in the tree-bank, how its meaning is constructed out
of the meaning of its parts. Just as in the purely syntactic version of DOP, we
extract all possible fragments from these syntactic/semantic analyses. We then use
these fragments to build an STSG. We alter the constraints on tree substitution, by
demanding that both the syntactic category and the semantic type of the root node
of a subtree match with those at the substitution site. Note that the semantic types
restrict the possibility of substitution. The language generated by an STSG created
on the basis of a semantically enriched tree-bank, is therefore a subset of the lan-
guage generated by an STSG created on the basis of the same tree-bank without
the semantic annotations. Ideally, the former STSG would exclude exactly the set
of semantically ill-formed sentences. The preferred analysis of an utterance will
now provide us with both a syntactic and a semantic interpretation. In the current
implementation the most probable analysis is taken to be the interpretation given
by the most probable derivation.

A corpus of syntactic and semantic analyses of transcribed utterances from the
OVIS domain was created to test this model. The OVIS tree-bank currently con-
tains 10.000 analyzed utterances. The top-node semantics of each annotated utter-
ance is an update-expression that conforms to the formalism described in Veldhuij-
zen van Zanten (1996). The semantic label of a node N in an analysis consists of a
rule, that indicates how the meaning of N (the update) is built-up out of the mean-
ings of N ’s daughter nodes. This semantic rule is typed. Its type follows from both
the rule itself, and from the types of the semantic labels of the daughter-nodes of
N , given the definition of the logical language used. In the present case, the type
of an expression is a pair of integers, its meet and join. The meet and join corre-
spond to the least upper bound and the greatest lower bound of the expression in
the type-hierarchy, as described in Veldhuijzen van Zanten (1996).

A semantically enriched STSG as described above, must fulfil an important
property. It has to be possible to define a function from derivations to logical for-

Evaluation of the NLP Components in OVIS2 5

mulas, that is defined for every derivation that can be produced by the grammar. In
other words, the information provided by semantic types and syntactic categories
in an analysis must be sufficient. Because the set of subtrees is closed under the
operation of subtree extraction, i.e., all subtrees T ′ that can be extracted from an-
other subtree T , belong to the same set as T , it is easy to establish this property,
even for a very large grammar. We only need to look at the subtrees of depth one.
If there is a unique semantic rule associated with the root-node of all subtrees of
depth one, given the syntactic categories and semantic types of its nodes, it follows
that we know the semantic rule at the nonterminal-nodes of every subtree. Fortu-
nately, the nature of the annotated tree-bank is such, that in about 99.9 % of cases
we can indeed establish the semantic rule at the root-node of a subtree in this way.
The few exceptions are assigned an “exception-type”, to reduce the uncertainty
to zero. We exploit the property described above, to construct a rewrite system
for the semantic STSG. This rewrite system applies the semantic rules associated
with every node in a derivation in a bottom up fashion, and arrives at the complete
logical formula.

Methods for word graphs. The evaluation experiments were performed using
just the semantic DOP-model as it was described above.

For every word graph the most probable intersection derivation was deter-
mined. The leaf-nodes of this derivation constitute the best path through the word
graph. The probability of a derivation is calculated on the basis of both the proba-
bilities of the subtrees extracted from the OVIS tree-bank, and the acoustic likeli-
hoods of the words in the word graph.

We created several instances of the semantic DOP-parser, with differing con-
straints on the form of possible subtrees. Four parameters can be distinguished,
whose values determine the constraints on subtrees. Below the parameters are
given, with the letters we commonly use to refer to each parameter.

d The maximal depth of subtrees.

l The maximal number of lexical items in a subtree.

L The maximal number of consecutive lexical items in a subtree.

n The maximal number of substitution sites in a subtree.

Obviously, the number of possible combinations is huge. We chose to use the
parameter settings for which previous experiments yielded the best results.

The results presented in this document are all obtained using the following
settings: l=9, L=3, n=2. For the maximum depth we used d=2 and d=4. No
constraints were applied to subtrees of depth 1.

If a word graph contains more than 350 transitions, the maximum depth of
subtrees is automatically limited to two, to avoid excessive memory requirements.
About 3% of word graphs in the testing material do contain more than 350 transi-
tions.

6 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

Methods for test sentences. For sentences, we used the same parameter settings,
but added an experiment with d=5.

In this document, some results on sentences are given with the extra indication
group. We will now briefly explain what this means.

Non-terminals in the semantic DOP-model consist of a syntactic-category /
semantic-type pair. Such a non-terminal imposes a rather rigid constraint on sub-
stitution. For the parsing of word graphs, this constraint seems to be beneficiary.
For the parsing of sentences, on the other hand, these constraints could be too rigid.
A greater degree of freedom results in over-generation, which in turn may lead to
better statistics. An algorithm was designed to group semantic types that have a
comparable distribution. This results in fewer non-terminals in the tree-bank, and
has been shown to lead to a higher semantic accuracy for sentences. The results
marked with group indicate that this grouping algorithm has been employed.

2.2 Grammar-based NLP

The grammar-based NLP component developed in Groningen is based on a de-
tailed computational grammar for Dutch, and a robust parsing algorithm which in-
corporates this grammatical knowledge as well as other knowledge sources, such
as the acoustic evidence (present in the word graph) and Ngram statistics (collected
from a large set of user utterances). It has been argued (van Noord et al. 1999) that
robust parsing can be based on sophisticated grammatical analysis. In particular,
the grammar describes full sentences, but in doing so, also describes the grammar
of temporal expressions and locative phrases which are the crucial concepts for the
timetable information application. Robustness is achieved by taking these phrases
into consideration, if a full parse of an utterance is not available.

Computational Grammar for Dutch. In developing the grammar the short-
term goal of developing a grammar which meets the requirements imposed by the
application (i.e. robust processing of the output of the speech recogniser, exten-
sive coverage of locative phrases and temporal expressions, and the construction
of fine-grained semantic representations) was combined with the long-term goal
of developing a general, computational, grammar which covers all the major con-
structions of Dutch.

The design and organisation of the grammar, as well as many aspects of the
particular grammatical analyses, are based on Head-driven Phrase Structure Gram-
mar (Pollard and Sag 1994). The grammar is compiled into a restricted kind of
definite clause grammar for which efficient processing is feasible. The seman-
tic component follows the approach to monotonic semantic interpretation using
quasi-logical forms presented originally in Alshawi (1992).

The grammar currently covers the majority of verbal subcategorisation types
(intransitives, transitives, verbs selecting a PP, and modal and auxiliary verbs),
NP-syntax (including pre- and post-nominal modification, with the exception of
relative clauses), PP-syntax, the distribution of VP-modifiers, various clausal types
(declaratives, yes/no and WH-questions, and subordinate clauses), all temporal ex-

Evaluation of the NLP Components in OVIS2 7

pressions and locative phrases relevant to the domain, and various typical spoken-
language constructs. Due to restrictions imposed by the speech recogniser, the
lexicon is relatively small (3200 word forms, many of which are names of stations
and cities).

Robust and Efficient Parsing. Parsing algorithms for strings can be generalised
to parse word graphs (van Noord 1995). In the ideal case, the parser will find a
path in the word graph that can be assigned an analysis according to the grammar,
such that the path covers the complete time span of the utterance, i.e. the path
leads from the start state to a final state. The analysis gives rise to an update of the
dialogue state, which is then passed on to the dialogue manager.

However, often no such paths can be found in the word graph, due to:

• errors made by the speech recogniser,

• linguistic constructions not covered in the grammar, and

• irregularities in the spoken utterance.

Even if no full analysis of the word graph is possible, it is usually the case that
useful information can be extracted from the word graph. Consider for example
the utterance:

(6) Ik
I

wil
want

van
from

van
from

Assen
Assen

naar
to

Amsterdam
Amsterdam

I want to travel from Assen to Amsterdam

The grammar will not assign an analysis to this utterance due to the repeated
preposition. However, it would be useful if the parser would discover the prepo-
sitional phrases van Assen and naar Amsterdam since in that case the important
information contained in the utterance can still be recovered. Thus, in cases where
no full analysis is possible the system should fall back on an approach reminiscent
of concept spotting. In van Noord et al. (1999) a general algorithm is proposed
which achieves this.

The first ingredient to a solution is that the parser is required to discover all oc-
currences of major syntactic categories (such as noun phrase, prepositional phrase,
subordinate sentence, root sentence) anywhere in the word graph. Conceptually,
one can think of these categories as edges which are added to the word graph in
addition to the transitions produced by the speech recogniser.

For such word graphs annotated with additional category edges, a path can be
defined as a sequence of steps where each step is either a transition or a category
edge. A transition step is called a ‘skip’. For a given annotated word graph many
paths are possible. On the basis of an appropriate weight function on such paths,
it is possible to search for the best path. The search algorithm is a straightforward
generalisation of the DAG-SHORTEST-PATH algorithm (Cormen et al. 1990).

The weight function is sensitive to the following factors:

8 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

• Acoustic score. Obviously, the acoustic score present in the word graph is
an important factor.

• The number of skips is minimised in order to obtain a preference for the
maximal projections found by the parser.

• Number of maximal projections. The number of maximal projections is
minimised in order to obtain a preference for more extended linguistic anal-
yses over a series of smaller ones.

• Ngram statistics.

The grammar-based NLP component is implemented in SICStus Prolog. Be-
low we report on a number of different methods which are all variations with
respect to this weight function.

Variants of Grammar-based NLP. The grammar-based NLP methods that have
taken part in the evaluation are of two types. The first type, b(B,N), consists of two
phases. In the first phase the word graph is made smaller by selecting the N-
best paths from the word graph, using the acoustic scores and a language model
consisting of bigrams (B=bi) or trigrams (B=tri) (with bigrams for backing-off).
Only those transitions of the word graph remain which are part of at least one of
those N-best paths. In the second phase the parser is applied, using acoustic scores
and a language model of trigrams (again with bigrams for backing-off).

The second type of method is f(B,N). In this case, if the word graph contains
less than N transitions, then the full word graph is input to the parser, and acoustic
scores and a language model of trigrams (bigrams for backing-off) is applied to
select the best analysis. If the word graph contains more than N transitions, then
method b(B,1) is applied.

3 Evaluation Procedure and Criteria

3.1 Procedure

An experimental version of the system has been available to the general public for
almost a year. From a large set of more recent dialogues a subset was selected
randomly for testing. Many of the other dialogues were available for training pur-
poses. Both the training and test dialogues are therefore dialogues with ‘normal’
users.

In particular, a training set of 10K richly annotated word graphs was available.
The 10K training corpus is annotated with the user utterance, a syntactic tree and
an update. This training set was used to train the DOP system. It was also used by
the grammar-based component for reasons of grammar maintenance and grammar
testing.

Evaluation of the NLP Components in OVIS2 9

A further training set of about 90K annotated user utterances was available as
well. It was primarily used for constructing the Ngram models incorporated in the
grammar-based component.

The NLP components of OVIS2 have been evaluated on 1000 unseen user ut-
terances. The latest version of the speech recogniser produced 1000 word graphs
on the basis of these 1000 user utterances. For these word graphs, annotations con-
sisting of the actual sentence (’test sentence’), and an update (’test update’) were
assigned semi-automatically, without taking into account the dialogue context in
which the sentences were uttered. These annotations were unknown to both NLP
groups. The annotation tools are described in Bonnema (1996).

After both NLP components had produced the results on word graphs, the test
sentences were made available. Both NLP components were then applied to these
test utterances as well, to mimic a situation in which speech recognition is perfect.

The test updates were available for inspection by the NLP groups only after
both modules completed processing the test material. A small number of errors
was encountered in these test updates. These errors were corrected before the
accuracy scores were computed. The accuracy scores presented below were all
obtained using the same evaluation software.

3.2 Criteria

The NLP components were compared with respect to the following two tasks.
Note that in each task, analysis proceeds in isolation from the dialogue context.
The first task is to provide an update for the test sentence (in this report we refer
to this update as the ‘best update’). The second task is to provide an update and a
sentence for the word graph (‘best update’ and ‘best sentence’). The quality of the
NLP components will be expressed in terms of string accuracy (comparison of the
best sentences with the test sentences), semantic accuracy (comparison of the best
updates with the test updates) and computational resources. Each of these criteria
is now explained in more detail.

String accuracy. String accuracy measures the distance of the test sentence and
the best sentence. String accuracy is expressed in terms of sentence accuracy (SA,
the proportion of cases in which the test sentence coincides with the best sen-
tence), and word accuracy (WA). The string comparison on which word accuracy
is based is defined by the minimal number of substitutions, deletions and insertions
of words that is required to turn the best sentence into the test sentence (Leven-
shtein distance). Word accuracy is defined as

(7) WA = 1 − d

n

where n is the length of the actual utterance and d is the Levenshtein distance.
For example, if the analysis gives ’a b a c d’ for the utterance ’a a c e’, then the
Levenshtein distance is 2, hence the WA is 1-2/4 is 50%.

10 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

Semantic accuracy. An update is a logical formula which can be evaluated
against an information state and which gives rise to a new, updated information
state. The most straightforward method for evaluating concept accuracy in this
setting is to compare the update produced by the grammar with the annotated up-
date. One problem with this approach is the fact that the update language does
not provide a simple way to compute equivalence of updates (there is no notion of
normal form for update expressions). A further obstacle is the fact that very fine-
grained semantic distinctions can be made in the update-language. While these
distinctions are relevant semantically (i.e. in certain cases they may lead to slightly
different updates of an information state), they often can be ignored by a dialogue
manager. For instance, the updates below are semantically not equivalent, as the
ground-focus distinction is slightly different. In the first update the feature place
is supposed to be ground, whereas in the second update, it is part of the focus.

(8) user.wants.travel.destination.place
([# town.leiden];[! town.abcoude])

(9) user.wants.travel.destination.
([# place.town.leiden];[! place.town.abcoude])

However, the dialogue manager will decide in both cases that this is a correction
of the destination town.

Since semantic analysis is the input for the dialogue manager, we have there-
fore measured concept accuracy in terms of a simplified version of the update
language. Following a somewhat similar proposal in Boros et al. (1996), we trans-
late each update into a set of “semantic units”, were a unit in our case is a triple
〈CommunicativeFunction Slot Value〉. For instance, the examples above translate
as

(10) <denial destination_town leiden>
<correction destination_town abcoude>

Both the updates in the annotated corpus and the updates produced by the system
are translated into semantic units of the form given above. The syntax of the
semantic unit language and the translation of updates to semantic units is defined
in van Noord (1997), but note that the translation of updates to semantic units is
relatively straightforward and is not expected to be a source of discussion, because
the relation is many to one.

Semantic accuracy can now be defined as follows. Firstly, we list the propor-
tion of utterances for which the corresponding semantic units exactly match the
semantic units of the annotation (exact match). Furthermore we calculate preci-
sion (the number of correct semantic units divided by the number of semantic units
which were produced) and recall (the number of correct semantic units divided by
the number of semantic units of the annotation). Finally, following Boros et al.
(1996) we also present concept accuracy as

(11) CA =
(

1 − SUS +SU I +SUD

SU

)

Evaluation of the NLP Components in OVIS2 11

graphs trans states words t/w max(t) max(s)
input 1000 48215 16181 3229 14.9 793 151

normalised 1000 73502 11056 3229 22.8 2943 128

Table 1: Characterisation of test set (1). This table lists the number of transitions, the
number of states, the number of words of the actual utterances, the average number of
transitions per word, the maximum number of transitions, and the maximum number of
states. The first row provides those statistics for the input word graph; the second row
for the so-called normalised word graph in which all ε-transitions (to model the absence
of sound) are removed. The number of transitions per word is an indication of the extra
ambiguity for the parser introduced by the word graphs in comparison with parsing of an
ordinary string.

where SU is the total number of semantic units in the corpus annotation, and
SUS , SU I , and SUD are the number of substitutions, insertions, and deletions
that are necessary to make the (translated) update of the analysis equivalent to (the
translation of) the corpus update.

Computational Resources. In order to measure computational efficiency, the
total amount of CPU-time, the maximum amount of CPU-time per input, and the
total memory requirements will be measured. Due to differences in hardware,
details differ between the two NLP components.

For the data-oriented methods, the CPU-time given is the user-time of the pars-
ing process, in seconds. This measure excludes the time used for system calls
made on behalf of the process (this can be ignored). Time was measured on a
Silicon Graphics Indigo, with a MIPS R10000 processor, running IRIX 6.2. Mem-
ory usage is the maximum number of mega-bytes required, to interpret the 1000
utterances. Regrettably, for a very small percentage (0.02%) of word graphs, the
process ran out of memory. This means that the figures for word graph parsing
indicate the size of the jobs at the moment the system gave up, which is generally
when the physical memory is filled. On the other hand, we should acknowledge the
fact that some large word graphs that did receive an interpretation, also approached
this limit.

For the grammar-based methods, CPU-time is measured in milliseconds on
a HP 9000/780 (running HP-UX 10.20). The system uses SICStus Prolog 3 #3.
CPU-time include all phases of processing, but does not contain the time required
for system calls (can be ignored) and garbage collection (adds at most 15% for
a given run). The memory requirements are given as the increase of the UNIX
process size to complete the full run of 1000 inputs. At start-up the process size
can be as large as 30 megabytes, so this number has been added in order to estimate
total memory requirements.

12 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

method WA SA
speech 69.8 56.0

possible 90.5 83.7
speech bigram 81.1 73.6
speech trigram 83.9 76.2

Table 2: Characterisation of test set (2). Word accuracy and sentence accuracy based on
acoustic score only (speech); using the best possible path through the word graph, i.e. based
on acoustic scores only (possible); and using a combination of bigram (resp. trigram) scores
and acoustic scores.

3.3 Test Set

Some indication of the difficulty of the set of 1000 word graphs is presented in
table 1. A further indication of the difficulty of this set of word graphs is obtained
if we look at the word and sentence accuracy obtained by a number of simple
methods. The method speech only takes into account the acoustic scores found in
the word graph. No language model is taken into account. The method possible
assumes that there is an oracle which chooses a path such that it turns out to be the
best possible path. This method can be seen as a natural upper bound of what can
be achieved.

The methods speech bigram and speech trigram use a combination of bigram
(resp. trigram) statistics and the speech score. In the latter four cases, a language
model was computed from about 50K utterances (not containing the utterances
from the test set). The results are summarised in table 2.

During the development of the NLP components of OVIS2, word graphs were
typically small: about 4 transitions per word on average. During the evaluation,
however, the number of transitions per word for the test set was much larger. It
turned out that the NLP components had trouble with very large word graphs (both
memory and CPU-time requirements increase rapidly).

Recently, improvements have already been obtained to treat such large word
graphs. For example, the grammar-based NLP component has been extended with
a heuristic version of the search algorithm which is not guaranteed to find the best
path. In practice this implementation returns the same answers as the original
search algorithm, but much more quickly so (two orders of magnitude faster).

4 Results of the Evaluation

This section lists the results for word graphs. In table 3 we list the results in terms
of string accuracy, semantic accuracy and the computational resources required to
complete the test.

The total amount of CPU-time is somewhat misleading because typically many
word graphs can be treated very efficiently, whereas only a few word graphs re-
quire very much CPU-time. In table 4 we indicate the semantic accuracy (concept

Evaluation of the NLP Components in OVIS2 13

Method Site String Acc Semantic Accuracy CPU Mem
WA SA match prec recall ca total max max

d2 A’dam 76.8 69.3 74.9 80.1 78.8 75.5 7011 648 619
d4 A’dam 77.2 69.4 74.9 79.1 78.8 75.1 32798 2023 621

f(bi,50) Gron 81.3 74.6 79.5 82.9 83.8 79.9 215 16 37
f(bi,100) Gron 82.3 75.8 80.9 83.6 84.8 80.9 297 15 37
f(bi,125) Gron 82.3 75.9 81.3 83.9 85.2 81.3 340 24 38
b(bi,1) Gron 81.1 73.6 78.5 82.1 83.1 78.9 175 16 31
b(bi,2) Gron 82.3 75.7 80.8 83.9 84.8 81.1 255 20 32
b(bi,4) Gron 82.8 76.0 80.8 83.8 85.0 81.3 479 115 34
b(bi,8) Gron 83.4 76.5 81.6 84.6 85.6 82.2 780 276 43

b(bi,16) Gron 83.8 76.4 81.7 84.9 86.0 82.6 1659 757 60
f(tr,50) Gron 83.9 76.2 81.8 84.9 85.9 82.5 1399 607 64

f(tr,100) Gron 84.2 76.6 82.0 85.0 86.0 82.6 1614 690 64
f(tr,125) Gron 84.2 76.5 82.1 85.3 86.3 82.8 1723 755 64
b(tr,1) Gron 83.9 76.2 81.5 84.5 85.7 82.2 1420 603 64
b(tr,2) Gron 84.1 76.4 81.8 85.3 86.4 83.0 2802 1405 101
b(tr,4) Gron 84.3 76.4 82.0 85.4 86.4 83.0 5524 2791 177

Table 3: Accuracy and Computational Resources for 1000 word graphs. String Ac-
curacy and Semantic Accuracy is given as percentages; total and maximum CPU-time in
seconds, maximum memory requirements in Megabytes.

accuracy) that is obtained if a time-out is assumed (in such cases we assume that
the system does not provide an update).

We also present the results for test sentences (rather than word graphs). Such a
test indicates what the results are if the speech recogniser would perform perfectly.
Obviously, it does not make sense to measure string accuracy in such a set-up. Se-
mantic accuracy and computational resources is presented in table 5. Because the
average sentence length is very small, we present the results for concept accuracy
versus the length of the input sentence in table 6.

5 Conclusions

The grammar-based methods developed in Groningen perform much better than
the data-oriented methods developed in Amsterdam. For word graphs, the best
data-oriented method obtains an error-rate for concept accuracy of 24.5%. The best
grammar-based method performs more than 30% better: an error-rate for concept
accuracy of 17.0%. For sentences, a similar difference can be observed. The best
data-oriented method obtains an error rate for concept accuracy of 8.5% whereas
the grammar-based method performs more than 40% better with a 5.0% error rate.
The differences increase with increasing sentence length.

The grammar-based methods require less computational resources than the
data-oriented methods. However, the CPU-time requirements are still outrageous
for a small number of very large word graphs1. For sentences, the grammar-based
1As mentioned before, a dramatic reduction has been obtained by a heuristic search algorithm.

14 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

Method Site 100 500 1000 5000 10000 >

d2 A’dam 37.0 53.0 58.1 68.1 70.4 75.5
d4 A’dam 24.6 34.5 38.2 50.4 57.3 75.1

f(bi,50) Gron 46.0 73.7 76.9 80.3 80.3 79.9
f(bi,100) Gron 44.4 67.9 75.3 81.1 81.2 80.9
f(bi,125) Gron 44.6 64.9 73.3 81.3 81.7 81.3
b(bi,1) Gron 58.2 73.1 76.6 79.3 79.2 78.9
b(bi,2) Gron 54.7 74.1 77.6 81.1 81.5 81.1
b(bi,4) Gron 49.6 72.3 75.6 80.3 80.5 81.3
b(bi,8) Gron 45.9 70.2 74.4 80.9 81.5 82.2

b(bi,16) Gron 42.2 65.5 72.5 78.0 81.0 82.6
f(tr,50) Gron 45.5 71.2 75.4 81.0 81.7 82.6

f(tr,100) Gron 44.5 64.2 71.9 80.5 81.8 82.6
f(tr,125) Gron 44.1 62.2 70.2 80.6 81.9 82.8
b(tr,1) Gron 52.7 70.9 74.7 80.7 81.2 82.2
b(tr,2) Gron 49.6 68.8 72.7 79.1 81.4 83.0
b(tr,4) Gron 48.0 66.6 71.6 78.2 79.5 83.0

Table 4: Concept accuracy for 1000 word graphs (percentages), if all results are disre-
garded with a time-out of respectively 100, 500, 1000, 5000, 10000 milliseconds of CPU-
time. The last column repeats the results if no time-out is assumed.

Method Site Semantic Accuracy CPU Mem
match prec recall ca total max max

d4 A’dam 92.2 93.8 91.2 90.4 856 14 21
group.d2 A’dam 93.0 94.0 92.5 91.6 91 9 14
group.d4 A’dam 92.7 93.8 91.8 91.0 1614 174 48
group.d5 A’dam 92.6 93.7 92.3 91.4 3159 337 78

nlp Gron 95.7 95.7 96.4 95.0 27 1 31

Table 5: Semantic Accuracy and Computational Resources for 1000 test sentences.
Total and maximum CPU-time in seconds; memory in Megabytes.

Method site all ≥ 2 ≥ 4 ≥ 6 ≥ 8 ≥ 10

instances 1000 601 344 160 74 38
d4 A’dam 90.4 87.4 84.7 75.9 69.8 65.2

group.d2 A’dam 91.6 89.0 86.7 78.7 69.8 68.3
group.d4 A’dam 91.0 88.2 85.8 77.3 69.4 64.6
group.d5 A’dam 91.4 88.7 86.6 78.9 71.8 67.1

nlp Gron 95.0 93.4 93.0 88.1 85.9 87.0

Table 6: Concept Accuracy versus Sentence Length for 1000 test sentences. The third
column repeats the results for the full test set. The remaining columns list the results for the
subset of the test set containing the sentences with at least 2 (4, 6, 8, 10) words.

Evaluation of the NLP Components in OVIS2 15

component performs satisfactorily (with a maximum CPU-time of 610 millisec-
onds).

The by far most important problem for the application consists of disambigua-
tion of the word graph. The evaluation shows that NLP hardly helps here: a combi-
nation of speech scores and trigram scores performs much better in terms of string
accuracy than the data-oriented methods. The grammar-based methods have in-
corporated the insight that Ngrams are good at disambiguating word graphs; by
incorporating Ngram statistics similar results for string accuracy are obtained. In
order to see whether NLP helps at all, we could compare the b(tr,1) method (which
simply uses the best path in the word graph as input for the parser) with any of the
other grammar-based methods. For instance, the method b(tr,4) performs some-
what better than b(tr,1) (83.0% vs. 82.2% concept accuracy). This shows that in
fact NLP is helpful in choosing the best path2. If it were feasible to use methods
b(tr,N) or f(tr,N) with larger values of N, further improvements might be possible.

Once a given word graph has been disambiguated, then both NLP components
work reasonably well: this can be concluded based upon the concept accuracy
obtained for sentences. In those cases the grammar-based NLP component also
performs better than the data-oriented parser; this indicates that the difference in
performance between the two components is not (only) due to the introduction of
Ngram statistics in the grammar-based NLP component.

The current evaluation has brought some important shortcomings of the DOP
approach to light. Two important problems, for which solutions are in the making,
are briefly discussed below.

The first one is the inadequacy of the definition of subtree probability. It turns
out that Bod’s equation (3) given on page 3 shows a bias toward analyses derived
by subtrees from large corpus trees. The error lies in viewing an annotated corpus
as the “flat” collection of all its subtrees. Information is lost when the distribution
of the analyses that supply the subtrees is ignored. The effect is that a large part of
the probability mass is consumed by subtrees stemming from relatively rare, large
trees in the tree-bank. A better model has been designed, that provides a more
reliable way of estimating subtree probabilities.

The second shortcoming we will discuss is the fact that existing DOP algo-
rithms are unable to generalise over the syntactic structures in the data. Corpus-
based methods such as the current implementation of DOP, assume that the tree-
bank which they employ for acquiring the parser, constitutes a rich enough sample
of the domain. It is assumed that the part of the annotation scheme that is actu-
ally instantiated in the tree-bank does not under-generate on sentences of the do-
main. This assumption is not met by our current tree-bank. It turned out that one
can expect the tree-bank grammar to generate a parse-space containing the right
syntactic/semantic tree only for approximately 90-91% of unseen domain utter-
ances. This figure constitutes an upper bound on the accuracy for any probabilistic
model. Enlarging the tree-bank does not guarantee a good coverage, however. The
tree-bank will always represent only a sample of the domain. A solution for this
2This result is (just) statistically significant. We performed a paired T-test on the number of wrong
semantic units per graph. This results in a t

∗ score of 2.0 (with 999 degrees of freedom).

16 Veldhuijzen, Bouma, Sima’an, van Noord and Bonnema

problem is the development of automatic methods for generalising grammars, to
enhance their coverage. The goal is to improve both accuracy and coverage by
generalising over the structures encountered in the tree-bank.

Acknowledgements

This research was carried out within the framework of the Priority Programme
Language and Speech Technology (TST). The TST-Programme is sponsored by
NWO (Dutch Organisation for Scientific Research).

References

Alshawi, H. (ed.)(1992), The Core Language Engine, ACL-MIT press, Cambridge
Mass.

van den Berg, M., Bod, R. and Scha, R.(1994), A Corpus-Based Approach
to Semantic Interpretation, Proceedings Ninth Amsterdam Colloquium,
ILLC,University of Amsterdam.

Bod, R.(1993), Using an Annotated Corpus as a Stochastic Grammar, Sixth Con-
ference of the European Chapter of the Association for Computational Lin-
guistics, Utrecht.

Bod, R. and Scha, R.(1997), Data-oriented language processing: An overview,
Technical Report 38, NWO Priority Programme Language and Speech
Technology.

Bonnema, R.(1996), Data oriented semantics, Master’s thesis, Depart-
ment of Computational Linguistics, University of Amsterdam, URL:
earth.let.uva.nl/˜bonnema/dop-sem/scriptie.html.

Boros, M., Eckert, W., Gallwitz, F., Görz, G., Hanrieder, G. and Niemann,
H.(1996), Towards understanding spontaneous speech: Word accuracy vs.
concept accuracy, Proceedings of the Fourth International Conference on
Spoken Language Processing (ICSLP 96), Philadelphia.

Cormen, Leiserson and Rivest(1990), Introduction to Algorithms, MIT Press,
Cambridge Mass.

Oerder, M. and Ney, H.(1993), Word graphs: An efficient interface between
continuous-speech recognition and language understanding, ICASSP Vol-
ume 2, pp. 119–122.

Pollard, C. and Sag, I.(1994), Head-driven Phrase Structure Grammar, University
of Chicago / CSLI.

Scha, R.(1990), Language Theory and Language Technology; Competence and
Performance (in Dutch), in Q. de Kort and G. Leerdam (eds), Comput-
ertoepassingen in de Neerlandistiek, Almere: Landelijke Vereniging van
Neerlandici (LVVN-jaarboek).

Scha, R., Bonnema, R., Bod, R. and Sima’an, K.(1996), Disambiguation and inter-
pretation of wordgraphs using data oriented parsing, Technical Report 31,
NWO Priority Programme Language and Speech Technology.

Sima’an, K.(1996a), An optimized algorithm for Data Oriented Parsing, in

Evaluation of the NLP Components in OVIS2 17

R. Mitkov and N. Nicolov (eds), Recent Advances in Natural Language
Processing 1995, Vol. 136 of Current Issues in Linguistic Theory, John
Benjamins, Amsterdam.

Sima’an, K.(1996b), Computational Complexity of Probabilistic Disambigua-
tion by means of Tree-Grammars, Proceedings COLING’96, Copenhagen,
Denmark.

Sima’an, K.(1997), Learning efficient parsing, Technical Report 35, NWO Priority
Programme Language and Speech Technology.

van Noord, G.(1995), The intersection of finite state automata and definite clause
grammars, 33th Annual Meeting of the Association for Computational Lin-
guistics, MIT Cambridge Mass., pp. 159–165. cmp-lg/9504026.

van Noord, G.(1997), Evaluation of OVIS2 NLP components, Technical Re-
port 46, NWO Priority Programme Language and Speech Technology.

van Noord, G., Bouma, G., Koeling, R. and Nederhof, M.-J.(1996a), Conventional
natural language processing in the NWO priority programme on language
and speech technology. October 1996 Deliverables, Technical Report 28,
NWO Priority Programme Language and Speech Technology.

van Noord, G., Bouma, G., Koeling, R. and Nederhof, M.-J.(1999), Robust gram-
matical analysis for spoken dialogue systems, Journal of Natural Language
Engineering. To appear; 48 pages.

van Noord, G., Nederhof, M.-J., Koeling, R. and Bouma, G.(1996b), Conventional
natural language processing in the NWO priority programme on language
and speech technology. January 1996 Deliverables, Technical Report 22,
NWO Priority Programme Language and Speech Technology.

Veldhuijzen van Zanten, G.(1996), Semantics of update expressions, Technical
Report 24, NWO Priority Programme Language and Speech Technology.

