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Abstract. Finite-state techniques are widely used in various areas of
Natural Language Processing (NLP). As Kaplan and Kay [12] have ar-
gued, regular expressions are the appropriate level of abstraction for
thinking about finite-state languages and finite-state relations. More
complex finite-state operations (such as contexted replacement) are de-
fined on the basis of basic operations (such as Kleene closure, comple-
mentation, composition).
In order to be able to experiment with such complex finite-state oper-
ations the FSA Utilities (version 5) provides an extendible regular ex-
pression compiler. The paper discusses the regular expression operations
provided by the compiler, and the possibilities to create new regular ex-
pression operators. The benefits of such an extendible regular expression
compiler are illustrated with a number of examples taken from recent
publications in the area of finite-state approaches to NLP.

1 Introduction

Finite-state techniques are widely used in various areas of Natural Language
Processing (NLP). As Kaplan and Kay [12] have argued, regular expressions are
the appropriate level of abstraction for thinking about finite-state languages and
finite-state relations. More complex finite-state operations (such as contexted
replacement) are defined on the basis of basic operations (such as Kleene closure,
complementation, composition).

For instance, context sensitive rewrite rules have been widely used in several
areas of natural language processing, including syntax, phonology and speech
processing. Johnson [11] has shown that such rewrite rules are equivalent to
finite state transducers under the assumption that they are not allowed to rewrite
their own output. An algorithm for compilation into transducers was provided by
Kaplan and Kay [12]. Improvements and extensions to this algorithm have been
provided by Karttunen [13] [15] [14] and Mohri & Sproat [19]. Such algorithms
take as their input regular expressions for the strings to be replaced and the left
and right contexts, and produce a finite-state transducer. In other words, such
an algorithm provides a new regular expression operator.

Many different variants of replacement operators have been proposed, de-
pending on whether rewrite rules are interpreted left to right, right to left or in



parallel; whether rewrite rules are required to use longest, shortest or all matches;
whether rules are obligatory or optional; whether contexts should match the in-
put side or the output side of the transductions etc. For this reason, it is crucial
to be able to experiment with each of the various proposals in a flexible way.

Version 5 of the FSA Utilities [25] is an extended, rewritten and redesigned
version of the FSA Utilities toolbox previously presented at the first WIA [24].
The FSA Utilities toolbox has been developed as a platform for experimenting
with finite-state approaches in natural language processing. For this reason, the
FSA Utilities toolbox is implemented in SICStus Prolog (cf. also section 5).

FSA5 provides a very flexible extendible regular expression compiler. Below,
we present the basic regular expression operations provided by the compiler,
and the possibilities to create new regular expression operators. We illustrate
the exendible regular expression compiler with a number of examples taken from
recent publications in the area of finite-state approaches to NLP.

2 Regular Expressions

[] empty string
[E1,E2,...En] concatenation of E1, E2 ...En

{} empty language
{E1,E2,...En} union of E1, E2 ...En

E* Kleene closure
E^ optionality
~E complement

E1-E2 difference
$ E containment

E1 & E2 intersection
? any symbol
A:B pair

E1 x E2 cross-product
A o B composition

domain(E) domain of a transduction
range(E) range of a transduction

identity(E) identity transduction
inverse(E) inverse transduction

Table 1. Basic regular expression operators in FSA5.

Table 1 gives an overview of the basic regular expression operators provided
by FSA5. Apart from the standard regular expression operators and extended
regular expression operators for regular languages, the tool-box also provides
regular expression operators for regular relations. For example, the expression

{a:b,b:c,c:a}* (1)



is the transducer which rewrites each a into a b, each b into a c, and each c

into an a. Consider furthermore a transducer which removes each b, but which
leaves each non-b in place:

{b:[],? -b}* (2)

In this example1, the expression ? -b is any symbol except b. An expression
Expr denoting a regular language is automatically coerced in the context in
which a transducer is expected into identity(Expr). Here, ? -b is automat-
ically coerced into identity(? -b), because it is unioned with a transducer.
Composing the examples 1 and 2:

{a:b,b:c,c:a}* o {b:[],? -b}* (3)

yields a transducer which removes each a, and transduces each b to a c, and
each c to an a. For instance, the input abcabcabc yields cacaca.

In FSA5, such a regular expression could be turned into a transducer using
the command:

% fsa -r ’{a:b,b:c,c:a}* o {b:[],? -b}*’ > ex1.fa (4)

In this case, the resulting automaton is written to the file ex1.fa in FSA5 for-
mat. There are options to produce automata in many different formats, includ-
ing formats for other finite-automata tool-boxes such as AT&T’s fsm program
[18] and various visualization formats (including dot, vcg, daVinci, LATEX and
postscript). Other interesting formats are as a Prolog or C program imple-
menting the transduction.

FSA5 can also be used interactively. In that case a graphical user interface is
provided from which regular expressions can be input. The resulting automata
are then displayed on the screen, and the resulting automata can be tested with
sample inputs. The availability of such a graphical user interface in combination
with various visualization tools has enabled the use of FSA5 in teaching [3].
For more information on these and other possibilities refer to the FSA Home
Page: http://www.let.rug.nl/vannoord/Fsa/. The FSA Home Page includes
an on-line demo.

3 Extendible Regular Expression Operators

The regular expression compiler can be extended with new regular expression
operators by providing one or more files defining these operators. The definitions
are essentially of two types. In both cases, the actual definitions are written in
(often very simple) Prolog. On the one hand, operators can be defined in terms
of existing regular expression operators. On the other hand, regular expression
operators can be defined by providing a direct implementation on the underlying
automata. Many researchers prefer the first style. For instance, Kaplan & Kay
[12] (p. 376) argue:
1 For technical reasons a space is required after each occurrence of the ? meta-symbol.



The common data structures that our programs manipulate are clearly
states, transitions, labels, and label pairs—the building blocks of finite
automata and transducers. But many of our initial mistakes and fail-
ures arose from attempting also to think in terms of these objects. The
automata required to implement even the simplest examples are large
and involve considerable subtlety for their construction. To view them
from the perspective of states and transitions is much like predicting
weather patterns by studying the movements of atoms and molecules or
inverting a matrix with a Turing machine. The only hope of success in
this domain lies in developing an appropriate set of high-level algebraic
operators for reasoning about languages and relations and for justifying
a corresponding set of operators and automata for computation.

Paradoxically, Mohri & Sproat improve upon Kaplan & Kay’s algorithm by
taking precisely the opposite approach. Their algorithm is primarily presented
in terms of manipulations upon states and transitions within automata. One
could perhaps translate Mohri & Sproat’s algorithm into a high-level calculus,
but a great deal of efficiency would be lost in the process. It is a testimony to
the flexibility of FSA5, that these two approaches can both be implemented and
combined (cf. section 4.3).

New operators in terms of existing operators. A regular expression operator is
defined as a pair macro(ExprA,ExprB) which indicates that the regular expres-
sion ExprA is to be interpreted as regular expression ExprB. For example, simple
nullary regular expression operators (equivalent to abbreviatory devices found
in tools such as lex and flex), can be defined as in the following example:

macro( vowel, {a,e,i,o,u} ) (5)

indicating that the operator vowel/0 can be understood by assuming that every
occurrence of vowel in a regular expression is textually replaced by {a,e,i,o,u}.

The same mechanism is used to define n-ary operators, exploiting Prolog
variables. For instance, the containment operator containment(Expr) is the set
of all strings which have as a sub-string any of the strings in Expr. This could
be defined as follows:2

macro(containment(Expr), [? *,Expr,? *]) (6)

Naturally, operators defined in this way can be part of the definition of other
operators. For instance, the operator free(A) is the language of all strings which
do not have any of the strings in A as a substring. This can be defined as:

macro(free(A), ~containment(A)) (7)

2 Note that this operator is standardly available in FSA5. Many of the built-in oper-
ators in FSA5 are defined using the same technique.



We have found it useful to define boolean operators using this mechanism. In
fact, if we use the universal language to stand for true and the empty language to
stand for false, then the standard operators for intersection and union correspond
to conjunction and disjunction:

macro(true,? *).

macro(false,{}).

(8)

With these definitions we get the expected properties:

true & true = true {true,true} = true

true & false = false {true,false} = true

false & true = false {false,true} = true

false & false = false {false,false} = false

(9)

The macros for true and false can also be used to define a conditional expres-
sion in the calculus. The operator coerce to boolean maps the empty language
to the empty language, and any non-empty language to the universal language:

macro(coerce_to_boolean(E),

range(E o (true x true))).

macro(if(Cond,Then,Else),

{ coerce_to_boolean(Cond) o Then,

~coerce_to_boolean(Cond) o Else }).

(10)

Various interesting properties of automata have been implemented which yield
boolean values, such as the predicates is equivalent/2 for recognizers, and is func-
tional/1 and is subsequential/1 for transducers (using the algorithms described
in for instance [23]).

Regular expression operator definitions can also be recursive. The follow-
ing example demonstrates furthermore that definitions can take the operands
of the operator into account. The operator set(List) yields the union of the
languages given by each of the expressions in the list List; union(A,B) is a
built-in operator providing the union of the two languages A and B:

macro(set([]),’{}’).

macro(set([H|T]),union(H,set(T))).

(11)

We can also exploit the fact that these definitions are directly interpreted
in Prolog by providing Prolog constraints on such rules. This possibility is used
in [7] to define a longest-match concatenation operator which implements the
leftmost-longest capture semantics required by the POSIX standard (cf. sec-
tion 4.4).

A simple example is a generalization of the operator free. Suppose we want
to define an operator free(N,Expr) indicating the set of strings which do not



contain more than N occurrences of Expr. This can be done as follows:

macro(free(N,X),~ [? *|List]) :-

free_list(N,X,List).

free_list(0,X,[X,? *]).

free_list(N0,X,[X,? *|T]) :-

N0 > 0, N is N0-1, free_list(N,X,T).

(12)

Another example is an implementation of the N-queens problem: how to place
N queens on an N by N chess-board in such a way that no queen attacks any
other queen. For any N we can create a regular expression generating exactly all
strings of solutions. A solution to the N-queen problem is represented as a string
of N integers between 1 and N. An integer i at position j in this string indicates
that a queen is placed on the i-th column of the j-th row.

macro(n_queens(N), sigma(N)*

& length(N)

& columns(N)

& diagonals(N)

& reverse(diagonals(N)))

(13)

The operator n queens(N) is defined as the intersection of a number of con-
straints. The first constraint, sigma(N)*, indicates that a solution must be a
string of integers between 1 and N. The second constraint indicates that the
length of the string must be N. The remaining constraints ensure that queens
do not attack each other. The definition of length illustrates once more the use
of Prolog to create a regular expression; the definition of sigma/1 uses the set

operator defined previously.

macro(length(N),List) :- length(List,N), fill_qm(List).

fill_qm([]).

fill_qm([? | T]) :- fill_qm(T).

macro(sigma(N),set(L)):-

findall(C,between(1,N,C),L).

between(N,_,N).

between(N0,N,I) :-

N1 is N0+1, N1 < N+1, between(N1,N,I).

(14)

The complete program is given in the appendix. For instance, the expression
n queens(5) produces the automaton in figure 1.

The mechanism described sofar to define new regular expression operators is
already quite powerful. As another illustration, consider the problem of compiling
a given finite automaton into a regular expression. This problem becomes trivial
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Fig. 1. Solution to the 5-queens problem



if we allow the introduction of new operators. Here is the definition of an operator
‘fa/5’ which describes an automaton as a listing of its components:

macro(fa(Sigma,States,Initials,Finals,Transitions),

range( % state-sym-state triples:

([[States,Sigma]*,States]

& % no non-transition triples:

free([States,Sigma,States]-Transitions)

& % start in start-state:

[Initials,? *]

& % end in final state:

[? *,Finals]

) o % get rid of state names:

[[States x [],?]*,States x []]

))

(15)

As an example, the automaton given in figure 2.16 of [10] (given in figure 2)
can be specified as:

fa({0,1},{q1,q2,q3},{q1},{q2,q3},

{[q1,0,q2],[q1,1,q3],[q2,0,q1],

[q2,1,q3],[q3,0,q2],[q3,1,q2]})

(16)

q1 q2 q30

1

0

1

0 1

Fig. 2. Example automaton from figure 2.16 of [10].

Direct implementation of new operators. Some operators are more easily defined
in terms of the underlying automaton. For instance, the operator reverse(X)

is the set of all strings Y such that the reversal of Y is in X. In case the operand
X is constructed by means of standard regular expression operators it would be
possible to define the reverse operator recursively in terms of the various forms
that X can take; in FSA however X could be constructed by means of various user-
defined operators as well. Therefore this approach is not applicable. However,
the operation is trivial to define in terms of the underlying automaton: each of
the transitions needs to be swapped, final states become start states and vice



versa. The (simplified) definition is given as follows:

rx(reverse(Expr),Fa) :-

fsa_regex:rx(Expr,Fa0), reverse_fa(Fa0,Fa).

reverse_fa(Fa0,Fa) :-

fsa_data:start_states(Fa0,Finals),

fsa_data:final_states(Fa0,Starts),

fsa_data:transitions(Fa0,Trans0),

reverse_transitions(Trans0,Trans),

fsa_data:construct_fa(Starts,Finals,Trans,Fa).

reverse_trans([],[]).

reverse_trans([trans(A,B,C)|T0],[trans(C,B,A)|T]) :-

reverse_trans(T0,T).

(17)

As is typical in such definitions, the fsa regex:rx predicate is used to construct
an automaton for a given regular expression. The fsa data module provides a
consistent interface to the internal representation of automata. Its predicates
can be used to select relevant parts of an automaton (such as start states, final
states and transitions) and to construct automata on the basis of such parts.

4 Regular Expression Operators in NLP

This section illustrates the flexibility and the power of the FSA5 extendible
regular expression compiler on the basis of a number of examples taken from
recent publications in the field of NLP.

4.1 Lenient Composition.

In a recent paper, Karttunen [16] has provided a new formalization of Optimal-
ity Theory in terms of regular expressions. Optimality theory [20] is a frame-
work for the description of phonological regularities which abandons rewrite
rules. Instead, a universal function called gen is proposed which maps input
strings non-deterministically to many different output strings. In addition, a set
of ranked universal constraints rule out many of the phonological representations
generated by gen. Some constraints can be conflicting. Therefore it might be
impossible for a candidate string to satisfy all constraints. A string is allowed
to violate a constraint as long as there is no other string which does not violate
that constraint.

Procedurally, this mechanism can be understood as follows. Firstly, an in-
put is mapped to a set of candidate output strings. This set of strings is then
passed on to the most important constraint. This constraint removes many of
the candidate strings. The remaining strings are passed on to the next impor-
tant constraint, and so on. If the application of the constraint would remove all



remaining candidate strings, then no strings are removed (constraints are vio-
lable). In the simplest case, only a single string survives all of the constraints. If
none of the strings satisfy a given constraint, then the strings survive with the
least number of violations of that constraint.

Karttunen formalizes gen as a regular relation. Each of the constraints is it-
self a regular language allowing only the strings which satisfy the constraint (un-
less no strings satisfy the constraint). If the constraints were to be combined using
ordinary composition, then the set of outputs would often be empty. Therefore,
instead of composition Karttunen introduces an operation of lenient composition
which is closely related to a notion of defaults.

Informally, the lenient composition of S and C is the composition of S and C,
except for those elements in the domain of S that are not mapped to anything
by S o C. Thus, it enforces the constraint C to those strings in S which have an
output that satisfies the constraint:

macro(priority_union(Q,R), {Q, ~domain(Q) o R}).

macro(lenient_composition(S,C), priority_union(S o C,S)).

(18)

Here, priority union of two transductions Q and R is defined as the union of
Q and the composition of the complement of the domain of Q with R; i.e. we
obtain all pairs from Q, and moreover for all elements not in the domain of Q
we apply R. Lenient composition of S and C is defined as the priority union of
the composition of S and C (on the one hand) and S (on the other hand); i.e.
we obtain the composition of S and C and moreover for all inputs for which that
composition is empty we retain S.

Consider the example

lenient_composition({b x [b,b],a x [b,b]*},[b,b,b]*) (19)

The input transducer maps an a to an even number of b’s, and it maps a b to
two b’s. If this transducer is leniently composed with the requirement that the
result must be a string of b’s divisible by 3, then the resulting transducer maps
b to two b’s, as before (since the constraint cannot be satisfied for any map of
the input b), and it maps an a to a string of b’s which is divisible by 6.

Karttunen illustrates the method by providing a formalization of the syllabi-
fication analysis in Optimality Theory. This formalization has been implemented
in FSA5 and is given in the appendix.

4.2 Priority Union for lexical analysis

Another application of the priority union operator is in spell checking. As in [4]
we consider a finite-automaton approach. Suppose we are given a dictionary in
the form of a transducer. The transducer will map each word to its lexicographic
description. A spell checker attempts to find, for a given word, the lexicographic
description of the word which is closest to a word in the dictionary according
to some distance function. As in many spell checkers we assume Levenshtein
distance: the minumum number of substitutions, deletions and insertions that



is required to map a string into another. In FSA all strings with a Levenshtein
distance of 1 can be defined as follows; here X can be thought of as the dictionary,
lev1(X) is the Levenshtein-1 closure of the dictionary:

macro(lev1(X), { subs(X), del(X), ins(X) }) (20)

The operators subs/1, del/1 and ins/1 are built-in. The expression subs(X)

stands for all pairs (x, y) such that (x′, y) is in the relation defined by X and
x′ can be formed from x by a single substitution. The insertion and deletion
operators are defined likewise.

In contrast to [4] we want to obtain the candidates with minimal distance. For
instance, if we attempt to lookup book then we don’t want to get the description
of cook as a result. This can be defined using the priority union operator as
follows:

macro(spell1(X), priority_union(X, lev1(X))) (21)

For instance, applying spell1 to a dictionary consisting of the identity trans-
ducer over the words book, look, lock, oak would map each of these words to
itself, and in addition it would map a form such as wook to the set book, look
and a form such as ook to the set book, look, oak.

We can define expressions for any given radius α. For example, the case which
treats α = 2 is given by:

macro(spell2(X), priority_union(spell1(X), lev1(lev1(X)))) (22)

4.3 The replace operator.

In [19] a variant of the replace operator is implemented which is more efficient
than previous implementations provided by Kaplan and Kay [12] and Karttunen
[13]. This improved version crucially depends on the possibility of manipulating
the transitions and states of the underlying automata directly. The replace-
ment of expression Phi into Psi in the context of Left and Right is written
replace(Left,Phi,Psi,Right). In the left-to-right interpretation, this opera-
tor can be defined as the following cascade:

macro(replace(L,Phi,Psi,R),

r(R) o f(Phi) o replace(Phi,Psi) o l1(L) o l2(L))

(23)

This definition and the definitions of the auxiliary operators are closely modelled
on those given in [19]. The auxiliary operators are defined in the appendix.

A typical example of the use of the replace operator is provided by the past
tense endings of Dutch regular verbs. In Dutch, the singular past tense is formed
by the -de and -te suffixes. If the previous phoneme is voiced, the suffix -de must
be used; in order circumstances the -te suffix is appropriate. This phenomenon



can be analysed by assuming an underlying, abstract, -Te suffix. The T is then
transformed into a d or t depending on context. The rule can be defined as
follows (the + indicates a morpheme boundary):

macro(tkofschip,

replace([{k,f,s,[c,h],p,t,x},+],’T’,t,e)

o

replace(+,’T’,d, [])

(24)

4.4 Leftmost-longest contexted replacement.

In [7] a leftmost-longest match contexted replacement operator

lml(T,Left,Right)

is defined which ensures that the transducer T is applied in contexts Left and
Right, using a leftmost-longest match strategy. One application of such an oper-
ator is finite-state parsing (chunking), [1, 5, 8, 22]. In finite-state parsing, sets of
context-free rules are collected into levels. Typically there is a finite number of
such levels, and these levels are ordered. First each of the rules of the first level
apply. The result is then input to the second level, etc. Note that rules cannot
work on their own output, unless the same rule is placed in several levels.

In the following example we will not use the contexts; therefore lml/1 is
defined as:

macro( lml(T), lml(T,[],[]) ) (25)

This operator ensures that the transducer T is applied to a string at all possible
positions, using a left-to-right left-most longest match policy.

In this particular example we will assume that the input to the finite-state
parser is a tagged sentence: each word is represented by a category, an opening
bracket, the word itself, and a closing bracket. A rule with a given left hand
side and right hand side will look for the sequence of elements described by the
right hand side and wrap the result inside left hand side brackets. In general,
the macro --> can be defined as the following transducer (this macro disallows
the case that the daughters is the empty string):

macro((A --> Ds), [[] x [A,’[’], Ds-[], []:’]’]) (26)

We use the macro d(Expr) for elements in the right hand side of rules; the
macro dw(Expr) is similar but is used for pre-terminals, to refer to specific words.

macro(d(Cat), [Cat, ’[’:’(’,free(’]’),’]’:’)’]).

macro(dw(Cat,Word),[Cat, ’[’:’(’, Word, ’]’:’)’]).

(27)

Note that the brackets (introduced by an earlier level) are replaced here by
other brackets in order to ensure that these brackets cannot be used in later



levels again; in other words at any given level we can only ‘see’ the top-most
constituents (yet, the full parse tree can be recoved using the ‘invisible’ brackets).

Using these two macro’s a rule to recognize basic noun phrases is:

np --> [d(art)^,d(num)^,d(adj)*,d(n)+] (28)

A level of rules can now simply be defined as the replacement operator applied
to the union of these rules. For instance, the following is a level recognizing multi-
word-units (for instance, the Dutch phrase ‘ten opzichte van’ is comparable to
the English phrase ‘with respect to’):

macro(mwu,lml({

(p --> [dw(p,ten),dw(n,opzichte),dw(p,van)] ),

(p --> [dw(p,in),dw(n,verband),dw(p,met)] ),

(p --> [dw(p,in),dw(n,plaats),dw(p,van)] ) }))

(29)

Finally, we use composition to combine a number of such levels. Thus, the
following expression defines a simple noun-phrase chunker:

macro(np_chunker,

mwu o lml(( adj --> [d(adv), d(adj)]))

o lml(( np --> [d(art)^,d(num)^,d(adj)*,d(n)+]))

o lml(( pp --> [d(p),d(np)]))

o lml(( np --> [d(np),d(pp)+])))

(30)

For example, one of the sentences from the Eindhoven corpus [6] is chunked as
in figure 3.

5 Implementational Issues

The regular expression compiler is defined in SICStus Prolog. This choice was
motivated because the FSA Utilities toolbox has been developed as a platform
for experimenting with finite-state approaches in natural language processing.
Prolog allows for rapid prototyping of new techniques and variations of known
techniques. The drawback is that the CPU-time requirements increase in com-
parison with an implementation based on C or C++. In [26] it is shown that the
implementation of the determinizer is typically about 2 to 5 times slower in FSA
Utilities than in AT&T’s fsm library ([18]); the FSA Utilities toolbox contains a
variant of the determinization algorithm for input automata with large amounts
of ε-moves. In such cases FSA Utilities is often much faster. The implementa-
tion of the minimization algorithm [9, 2] is up to three times faster than the
implementation described in [17], which was shown to be much faster than the
corresponding implementations in Fire Lite [27] and Grail [21].

Regular expressions are read and parsed using the Prolog parser (i.e. regular
expressions are read in as Prolog terms), exploiting the inherent flexibility of
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Fig. 3. Application of NP chunker

this parser (such as the possibility to declare that new operators may be written
using operator syntax; therefore we can write E1 o E2 instead of o(E1,E2)).
The constructed term is straightforwardly compiled into a corresponding finite
automaton using a simple top-down recursive-descent procedure.

This mechanism implies that in order to construct an automaton for a reg-
ular expression such as [a*,b,c^,d+] automata are constructed for each of the
sub-expressions. For regular expressions which are constructed solely using such
simple operators, more efficient automaton construction algorithms are known.
We have not implemented these algorithms because of the desire to be able to
treat user-defined operators. A possible improvement could be to have the com-
piler identify which parts of an expression are simple enough to be treated by a
more efficient specialized algorithm.

The compiler supports caching of sub-expressions. If the cache facility is
switched on, then the result of each sub-expression that is encountered will be
cached for later re-use. This can increase efficiency for the compilation of a single
expression, but it is especially useful in an interactive session where the user
gradually alters the regular expression; typically a large part of the expression
remains the same and interactive response time can be much more attractive.

The caching facility can also be used selectively. The cache(Expr) operator
can be used to cache the result of the compilation of a specific regular expres-
sion Expr. For instance, in example 20 the expression lev1(X) is defined as {
subs(X), del(X), ins(X) }. If we write instead:

macro(lev1(X), {subs(cache(X)),del(cache(X)),ins(cache(X))}) (31)

then X will be compiled only once.



The compiler supports a number of other operators which have an effect on
the underlying automata, but not on the corresponding language or relation.
For instance, the operator determinize(Expr) can be used to ensure that the
resulting automaton is determinized. Similar operators provide a simple interface
to various minimization algorithms provided by FSA5.

Furthermore, certain operators can be used for the sole purpose of obtain-
ing a side-effect. One example was the cache/1 operator discussed above. The
operator spy(Expr), for instance, can be used to request that the compiler pro-
vides progress information on the compilation of the expression Expr (size of the
result, and CPU-time required to obtain the result). Such progress information
is crucial for a better understanding of the sources of complexity of particular
expressions.

Concluding Remarks

We have presented the extendable regular expression compiler of FSA5. We
have shown that the functionality and flexibility provided by the toolbox can be
used to experiment with a variety of finite-state techniques in natural language
processing, including applications in phonology, morphology and syntax.
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A Syllabification in Optimality Theory

This is the implementation of Karttunen’s formalization of syllabification in
Optimality Theory.

%% Karttunen’s X -> L ... R. Every X is ‘bracketed’ with L and R.

macro(dots(X,L,R), [[free(X), [[] x L, X, [] x R]]*, free(X)]).

%% Karttunen’s A => L R. Every A must occur in context L _ R.

macro(restrict(A,L,R), ~[? *,A,~[R,? *]] & ~[~[? *,L],A,? *]).

macro(cons,{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,z}).

macro(lbr,{’O[’, ’D[’, ’X[’, ’N[’}).

macro(input,{cons,vowel}*).

macro(parse, dots(cons,{’O[’,’D[’,’X[’},’]’)

o dots(vowel,{’N[’,’X[’},’]’)).

macro(overparse,[([] x [lbr,’]’])^,dots({cons,vowel},[],[lbr,’]’]^)]).

macro(onset,[’O[’, cons^, ’]’]).

macro(nucleus,[’N[’, vowel^, ’]’]).

macro(coda,[’D[’, cons^, ’]’]).

macro(unparsed,[’X[’, {cons,vowel}, ’]’]).

macro(syllable_structure,ignore([onset^,nucleus,coda^],unparsed)* ).

macro(gen, input o overparse o parse o syllable_structure).

macro(have_ons,restrict(’N[’, onset, [])).

macro(nocoda,free(’D[’)).

%% ’parse’ is used twice in Karttunen 98; we use parsed(N) where N is

%% the maximum number of occurrences of X

macro(parsed(N), free(N,’X[’)).

macro(fillnuc, free([’N[’, ’]’])).

macro(fillons, free([’O[’, ’]’])).

:- op(403,yfx,lc).

macro(R lc C, lenient_composition(R,C)).

macro(syllabify,gen lc have_ons lc nocoda lc fillnuc lc parsed(0) lc

parsed(1) lc parsed(2) lc parsed(3) lc parsed(4) lc fillons ).

B Mohri & Sproat Replace Operator

Implementation in FSA5 of the contexted replacement operator of [19].

macro(r(R),reverse(marker(1,[sigma*,reverse(R)],[>]))).

macro(f(F),reverse(marker(1,[{sigma,>}*,reverse([ignore(F,{>}),>])],

[’<1’,’<2’]))).

macro(l1(L), sloppy_ignore(marker(2,[sigma*,L],’<1’),{’<2’:’<2’})).

macro(l2(L),marker(3,[sigma*,L],’<2’)).



macro(replace(Phi,Psi), {{sigma,’<2’:’<2’, > :[]},

[’<1’:’<1’,ignore(Phi,{’<1’,’<2’,> }) x Psi,> :[]]}*).

macro(sigma,? - {’<1’,’<2’,>}).

rx(marker(Type,Expr,C),Fa) :-

fsa_regex:rx(identity(determinize(Expr)),Fa0), mark(Type,C,Fa0,Fa).

mark(1,Ins,Fa0,Fa) :- %% Ins: symbols to be inserted

fsa_regex:add_symbols(Ins,Fa0,Fa1), fsa_data:symbols(Fa1,Sig),

fsa_data:start_states(Fa1,Starts), fsa_data:transitions(Fa1,Trs0),

fsa_data:final_states(Fa1,Fins), fsa_data:all_states(Fa1,AllSts),

ordsets:ord_subtract(AllSts,Fins,NFins0),

add_ins(Fins,Ins,NFins,NFins0,Trs,Trs1),

replace_trs_sf(Trs0,Trs1,Fa0),

fsa_data:rename_fa(Sig,Starts,NFins,Trs,[],Fa).

replace_trs_sf([],[],_).

replace_trs_sf([trans(A0,B,C)|T0],[trans(A,B,C)|T],Fa):-

( fsa_data:final_state(Fa,A0) -> A=q(A0) ; A=A0 ),

replace_trs_sf(T0,T,Fa).

add_ins([],_,F,F) --> [].

add_ins([F0|Fs],Ins,[q(F0)|NewF0],NewF) -->

add_ins0(Ins,F0), add_ins(Fs,Ins,NewF0,NewF).

add_ins0([],_F) --> [].

add_ins0([Sym|Syms],F) --> [trans(F,[]/Sym,q(F))], add_ins0(Syms,F).

mark(2,Del,Fa0,Fa) :- %% Sym is a symbol to be deleted

fsa_regex:add_symbols([Del],Fa0,Fa1),

fsa_data:copy_fa_except(transitions,Fa1,Fa2,Trs0,Trs),

fsa_data:copy_fa_except(final_states,Fa2,Fa,Fins,AllSts),

fsa_data:all_states(Fa0,AllSts),

add_deletions(Fins,Del,Trs1,Trs0), sort(Trs1,Trs).

add_deletions([],_) --> [].

add_deletions([F|Fs],Del) --> [trans(F,Del/[],F)], add_deletions(Fs,Del).

mark(3,Del,Fa0,Fa) :- %% Del is a symbol to be deleted

fsa_regex:add_symbols([Del],Fa0,Fa1),

fsa_data:copy_fa_except(transitions,Fa1,Fa2,Trs0,Trs),

fsa_data:copy_fa_except(final_states,Fa2,Fa,Fins,AllSts),

fsa_data:all_states(Fa0,AllSts),

ordsets:ord_subtract(AllSts,Fins,NonFins),

add_deletions(NonFins,Del,Trs1,Trs0), sort(Trs1,Trs).

%% As defined by Mohri & Sproat. This should be done differently,

%% ignore is not defined for transducers.

macro(sloppy_ignore(A,B),ignore0(A,B)).



C N-queens Problem

macro(free(Expr), ~containment(Expr)).

macro(sigma(N),set(L)):- findall(C,fsa_util:between(1,N,C),L).

macro(columns(N),Ints) :- columns(1,N,Ints).

%% don’t use ordinary operator syntax, since this file is read-in with

%% regular expression operator precedences active.

columns(N,N,free([N,? *,N])).

columns(N0,N,free([N0,? *,N0]) & Ints) :-

N0<N, is(N1,+(N0,1)), columns(N1,N,Ints).

macro(diagonals(N), I) :- diagonals(1,N,I).

diagonals(N0,N,I) :- is(N,N0+1),!, diagonals_n(1,N0,N,I).

diagonals(N0,N,I0 & I) :- diagonals_n(1,N0,N,I0),

is(N1,+(N0,1)), diagonals(N1,N,I).

diagonals_n(N0,Br,N,I0) :- is(N,+(N0,Br)),!, diagonal(N0,Br,I0).

diagonals_n(N0,Br,N,I0 & I):-

diagonal(N0,Br,I0), is(N1,+(N0,1)), diagonals_n(N1,Br,N,I).

diagonal(N0,Br,free([N0,length(MidN),N])) :-

is(N,+(N0,Br)), is(MidN,-(Br,1)).


