
Parsing partially bracketed input

Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

Humanities Computing, University of Groningen

Abstract

A method is proposed to convert a Context Free Grammar to a Bracket Context Free Gram-
mar (BCFG). A BCFG is able to parse input strings which are, inpart or whole, annotated
with structural information (brackets). Parsing partially bracketed strings arises naturally in
several cases. One interesting application is semi-automatic treebank construction. Another
application is parsing of input strings which are first annotated by a NP-chunker.

Three ways of annotating an input string with structure information are introduced:
identifying a complete constituent by using a pair of round brackets, identifying the start or
the end of a constituent by using square brackets and identifying the type of a constituent by
subscripting the brackets with the type. If an input string is annotated with structural infor-
mation and is parsed with the BCFG, the number of generated parse trees can be reduced.
Only parse trees are generated which comply with the indicated structure.

An important non-trivial property of the proposed transformation is that it does not
generate spurious ambiguous parse trees.

1 Introduction

Natural language is highly ambiguous. If natural language sentences are parsed
according to a given Context Free Grammar (CFG), the number of parse trees
can be enormous. If some knowledge about the type and coherence of words
in a sentence is available beforehand, the number of parse trees can be reduced
drastically, and the parser will be faster. In this paper we present a method to parse
partially bracketed input.

The method presented in this paper is useful for a number of different appli-
cations. One interesting application is semi-automatic treebank construction. An-
other application is parsing of input strings which are firstannotated by a syntactic
chunker.

In recent years much effort is devoted to the construction oftreebanks: sets
of naturally occurring sentences that are associated with their correct parse. Typ-
ically, such treebanks are constructed in a semi-automaticway in which the sen-
tence is parsed by an automatic parser, and a linguist then selects, and sometimes
manually adapts, the appropriate parse from the set of parses found by the parser.
If a sentence is very ambiguous this process is rather cumbersome and time con-
suming. In our experience in the context of the constructionof the Alpino and
D-Coi treebanks (van der Beek, Bouma, Malouf and van Noord 2002, van Noord,
Schuurman and Vandeghinste 2006), the ability to addsome brackets (possibly
with the corresponding category) is a very intuitive and effective way to reduce
annotation efforts.

Below, we also introduce the possibility to annotate a sentence with an opening
bracket without a corresponding closing bracket, and vice versa. This possibility

1

2 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

is motivated by the second application: parsing input that is pre-processed by a
chunker. A chunker is an efficient program which finds occurrences of some syn-
tactic categories (typically noun phrases). If a reliable and efficient chunker is
available, syntactic parsing can be faster by using that chunker in a preprocessing
stage. One common implementation strategy which goes back to Ramshaw and
Marcus (1995) is to use techniques originally developed forPOS-tagging, and to
encode the start and end of chunks in the POS-tag inventory. Such chunkers are
able to detect where a chunks starts, or where a chunk ends, but the fact that the
beginning and the end of a chunk are supposed to co-occur is not inherent to the
technique, but is usually added as an ad-hoc filter on the output. The ability of
our method to allow independent opening and closing brackets in the input im-
plies that this ad-hoc filter is no longer needed. It remains to be investigated if this
improvement has empirical benefits as well.

In the past, researchers have experimented with techniqueswhere pairs of
parentheses are used to group constituents of an input string, such that fewer
parse trees are generated. In Pereira and Schabes (1992) as well as Stolcke (1995)
a method is given to adapt an existing parse algorithm (inside-outside and Ear-
ley) in such a way that it works faster with input strings which are annotated
with pairs of parentheses. In McNaughton (1967) and Knuth (1967) features of
a parenthesis grammar are discussed where brackets are added at the start and end
of every production rule,A → (a). In their bracketed context free grammar,
Ginsburg and Harrison (1967) add additional information bysubscripting brack-
ets with unique indexes,A → [1 a]1 andA → [2 b]2.

In our research, we have focused on finding an automatic procedure to convert
a given CFG to a Bracket Context Free Grammar (BCFG). A BCFG can parse the
same input strings as the CFG, but in addition these input strings may be annotated
in part or whole with legal structural information. By providing knowledge about
the structure of an input string, the number of parse trees can be reduced and a
correct parse can be found earlier. A property of the proposed transformation is
that it does not generate spurious ambiguous parse trees. This property is non-
trivial, as shall be shown later.

In the following section we indicate how an input string can be annotated with
structural information by using brackets. In the third section a recipe is given to
convert a CFG to a BCFG which can parse the annotated input strings. Features of
the recipe are discussed in section 4, before the conclusionis given in section 5.

2 Annotating an input string with structural information

In previous studies (e.g. McNaughton (1967) and Knuth (1967)) structural infor-
mation of the input string was added by placing a pair of brackets around each
constituent (a chunk) of the input string. Our method also allows partly annotated
(incomplete) input strings:

(The cat) (has caught (a mouse)).

Parsing partially bracketed input 3

Three chunks can be distinguished here:The cat, a mouse and has
caught a mouse.

It is also possible that knowledge about the type of the chunkis present (for ex-
ample a noun phrase or a verb phrase,NP orVP). It should be possible to store this
information, since more information about the structure may reduce the number
of possible parse trees. In our model we will indicate the type of a chunk by sub-
scripting the brackets of the chunk with this type. This way differs from Ginsburg
and Harrison (1967), in which each production rule containsa pair of uniquely
indexed brackets (A → [1 ...]1). Another difference is that in our annotation
method incomplete input strings are possible. Note that each bracket in a pair of
brackets must have the same subscript:

The cat (VP has caught (NP a mouse)NP)VP.

Besides allowing incomplete input strings, our method alsoallows for inconsistent
input strings. In this case the number of opening brackets does not equal the num-
ber of closing brackets. We will use square brackets to indicate the start and/or the
end of a chunk individually ([and]). In this case information about the structure
of an input string is also present - although more limited than in the other case.
Note that it is possible that an opening square bracket and a closing square bracket
may form a chunk, as is shown in the following inconsistent inputstring:

The cat [VP has caught [NP a mouse].

In this case it is left undecided which pair of brackets form achunk. When cer-
tainty exists about the beginning and end of the same chunk, it is better to use the
round brackets to indicate all knowledge about the structure.

Three methods can be used to indicate knowledge about the structure of an
input string:

• Define a complete chunk:(...)

• Define the start and/or end of a chunk:[and]

• Define typeA of a chunk:[A,]A, (A ...)A

The three methods can be combined as can be seen in the examples below:

(The cat) [VP has caught (NP a mouse)NP.

[VP (NP The mouse)NP walked through [NP the barn].

It was mentioned earlier that each single bracket in a pair oftypified brackets
should have the same subscript. It is also possible to subscript only one of the
brackets, after which (in a separate processing step) both brackets should be given
the same subscript. For this method it is necessary to find outwhich round brack-
ets form a pair. This can be realised in a straightforward way. A pair of round
brackets is identified by matching an opening round bracket to the nearest closing
round bracket, in such a way that the number of opening round brackets equals the
number of closing round brackets between them.

In this study, we have restricted ourselves to allow only structural information
for non-empty chunks. This decision will be treated in more detail in section 4.

4 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

3 Converting a CFG to a BCFG

In the previous section we indicated how structural information can be added to an
input string by using brackets and subscripts. The following step is to convert the
original CFG to a grammar which can also parse the round and square brackets (a
BCFG). Note that if the structure symbols are in the set of terminals of the original
CFG, other structure symbols should be chosen.

3.1 Ambiguity problems

A first approach to create the new grammar is to generate for each production rule
in the CFG,A → ..., the following 11 production rules in the BCFGGf :

A → ...
A → ...]
A → ...]A

A → [...
A → [...]
A → [...]A

A → [A ...
A → [A ...]
A → [A ...]A

A → (...)
A → (A ...)A

In this way all possible configurations of brackets are represented and no parse
trees will be generated which do not comply with the indicated structure. The
following example illustrates this (the start symbol isA):

A → B C

A → C D

B → a
C → a
D → a

The input stringaa can be parsed in two ways with this grammar:

• A ⇒ B C
∗

⇒ aa

• A ⇒ C D
∗

⇒ aa

If it is known in advance that the seconda is of typeD, this can be indicated by
annotating the input string in the following way:a [D a. To parse this input string,
the following generated production rules ofGf are relevant (the other production
rules are left out for simplicity):

Parsing partially bracketed input 5

A → B C

A → C D

B → a
C → a
D → a
D → [D a

The structure symbol can only be matched in the final production rule, therefore
the annotated input string can be parsed in one way only:A ⇒ C D

∗

⇒ a [D a.
By applying this naive conversion to generate the BCFG, it ispossible that for

a given annotated input string a large number of spurious ambiguous parse trees
are generated, which map - when the brackets are removed - on the same parse tree
according to the original grammar. This is illustrated withthe following CFG:

A → A a
A → a

If the input string is[A aa, the following generated production rules ofGf are
relevant:

A → A a
A → [A A a
A → a
A → [A a

Figure 1 shows that the input string[A aa can be parsed in two ways with the
BCFG, while only one parse tree exists for the unannotated input string in the
original grammar. According toGf more parse trees are generated than according
to the original CFG, which is of course an undesired property.

The general problem is thatGf does not fix in which production rule the square
bracket ([or]) is matched. This problem can occur with typified brackets when a
production rule of the same type as the bracket is traversed multiple times before
the terminal is reached. For example:A ⇒ B ⇒ C ⇒ A ⇒ t or A ⇒ B ⇒
C α ⇒ A α β ⇒ t α β. If the type of the (opening) bracket equalsA, the bracket
can be matched at the first or at the final production rule and multiple spurious
ambiguous parse trees are generated. If the brackets are nottypified this problem
occurs when multiple production rules (non-terminals) aretraversed before the
terminal is reached. For example:A ⇒ B ⇒ C ⇒ t or A ⇒ α B ⇒ α β C ⇒
α β t. Because the (closing) bracket can be matched at every non-terminal, again
multiple spurious ambiguous parse trees are generated.

If round brackets are used, the ambiguity problem occurs when unit rules are
traversed. If the grammar is converted to Chomsky Normal Form, the problem
with regard to the round brackets is solved, however the problem with the square
brackets still remains.

6 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

A

A a

a

[
A

A

A a

a[
A

A

A a

a

Figure 1:Parse trees for input [A aa and aa (left: BCFG, right: CFG)

3.2 Matching brackets as soon as possible

The problem of the previous approach, was the existence of ambiguity in the mo-
ment of matching the brackets. A solution for this problem isto define exactly
when a bracket should be matched. In the following we will give a conversion of a
CFG to a BCFG which enforces that brackets will be matched as soon as possible.

3.2.1 Short introduction to the method

In the following method a large number of new production rules in the BCFG (G)
are generated for each production rule in the CFG, based on the possible structure
symbols. By using two variables (s0 ands′0) for each production rule inG, the
structure symbol expected at the start (s0) and at the end (s′0) of the current input
string are stored. Because it is not always possible to matcha certain structure
symbol in a production rule, it is necessary to store for eachnon-terminal in the
right-hand side of the production the structure symbols with which these may start
and end. This is done by assigning to each non-terminal in theright-hand side of
the production rule two variables, which therefore map to the left side of the gen-
erated production rules. By using these variables it is enforced that if a matchable
square bracket is not matched in a production rule, it can also not be matched in a
later stage in the same parse tree. If round brackets are not matched, they can not
be matched in a later stage as long as unit rules are encountered. A more in-depth
explanation will be given after the conversion scheme is introduced.

When a specific bracket is expected as a start or end symbol of the current input
string, this is indicated by setting the value of the variable (s0 or s′0) equal to this
bracket. If no structure symbol may be matched, the symbolε is used to indicate
this.

3.3 Conversion scheme CFG→ BCFG

The following definitions are used with the conversion:

• N : the set of all non-terminals in the CFG

Parsing partially bracketed input 7

• T : the set of all terminals in the CFG

• Ω[= {[A: A ∈ (N ∪ ε)}

• Ω] = {]A: A ∈ (N ∪ ε)}

• Ω(= {(A: A ∈ (N ∪ ε)}

• Ω) = {)A: A ∈ (N ∪ ε)}

• Ωb = Ω[∪ Ω(∪ ε

• Ωb′ = Ω] ∪ Ω) ∪ ε

Note thatT must be different from the introduced structure symbols. Ifthis is not
the case, different structure symbols must be used.
In the BCFG, we add for each production rule of the CFG

A → X1 ... Xm

with Xi ∈ {N ∪ T }, new production rules

A(s0, s
′

0) → Y X ′

1 ... X ′

m Y ′

with

• (s0, s
′

0) ∈ Ωb × Ωb′

• Xi ∈ T ⇒ X ′

i = Xi

• Xi ∈ N ⇒ X ′

i = Xi(si, s
′

i), (si, s
′

i) ∈ Ωb × Ωb′

• Y ∈ {(,[,[A,(A, ε}

• Y ′ ∈ {),],]A,)A, ε}

Where exactly one condition of 1. and one condition of 2. musthold.
For instance, to make sure an opening square bracket is matched at the first

possibility, condition 1a. is used. Condition 1a. indicates that when an opening
square bracket has no type or a type corresponding to the current production rule,
it must be matched becauseY is also equal to this bracket (see condition 2a. for the
closing square bracket case). Alternatively, if no structure symbol may be matched
at the start of a sub-string, condition 1h. is used. Condition 1h. indicates that when
no structure symbol may be matched at the start of a certain sub-string (s0 equals
ε), this will hold becauseY ands1 must also equalε (see condition 2h. for the
same case at the end of a sub-string). A detailed explanationof all conditions is
given in paragraph 3.4.

1. (a) s0 = [t ∧ t ∈ {A, ε} ∧ Y = s0

(b) s0 ∈ Ω[\ {[A,[} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

8 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

(c) s0 = (t ∧ s′0 =)t ∧ t ∈ {A, ε} ∧ Y = s0 ∧ Y ′ = s′0

(d) s0 = (t∧s′0 =)t∧ t ∈ {A, ε}∧X1 ∈ N ∧m > 1∧Y = ε∧s1 = s0

(e) s0 ∈ Ω(\ {(A,(} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

(f) s0 = (t ∧ s′0 6=)t ∧ t ∈ {A, ε} ∧ X1 ∈ N ∧ Y = ε ∧ s1 = s0

(g) s0 = ε ∧ X1 ∈ T ∧ Y = ε

(h) s0 = ε ∧ X1 ∈ N ∧ Y = ε ∧ s1 = ε

2. (a) s′0 =]t ∧ t ∈ {A, ε} ∧ Y ′ = s′0

(b) s′0 ∈ Ω] \ {]A,]} ∧ Xm ∈ N ∧ Y ′ = ε ∧ s′m = s′0

(c) s′0 =)t ∧ s0 = (t ∧ t ∈ {A, ε} ∧ Y ′ = s′0 ∧ Y = s0

(d) s′0 =)t∧s0 = (t∧t ∈ {A, ε}∧Xm ∈ N∧m > 1∧Y ′ = ε∧s′m = s′0

(e) s′0 ∈ Ω) \ {)A,)} ∧ Xm ∈ N ∧ Y ′ = ε ∧ s′m = s′0

(f) s′0 =)t ∧ s0 6= (t ∧ t ∈ {A, ε} ∧ Xm ∈ N ∧ Y ′ = ε ∧ s′m = s′0

(g) s′0 = ε ∧ Xm ∈ T ∧ Y ′ = ε

(h) s′0 = ε ∧ Xm ∈ N ∧ Y ′ = ε ∧ s′m = ε

An ε-production rule (A → ε) in the CFG is converted toA(ε, ε) → ε in the
BCFG. As mentioned earlier, we only allow structural information for non-empty
chunks.

3.4 Explanation of the conversion scheme

For each production ruleA of the CFG a number of new production rules are
generated in the BCFGG (because of(s0, s

′

0) ∈ Ωb × Ωb′). For example, for a
non-ε-production rule of a CFG:

A → ...

the conversion toG will generate at least 11 new production rules:

A(ε , ε) → ...
A(ε ,]) → ...]
A(ε ,]A) → ...]A

A([, ε) → [...
A([,]) → [...]
A([,]A) → [...]A

A([A , ε) → [A ...
A([A ,]) → [A ...]
A([A ,]A) → [A ...]A

A((,)) → (...)
A((A ,)A) → (A ...)A

Parsing partially bracketed input 9

Because non-terminals may exist in the right-hand side of the production ruleA, it
is possible that there are more production rules generated.This is discussed later.

The large number of generated production rules is necessary, because there
must exist a production rule for each structure symbol in which it can be matched.
If more non-terminals are present in the CFG, the number of structure symbols
also increases (and this results in a larger grammar). An analysis of the number of
generated production rules, based on the original production rules, the number of
terminals and non-terminals in the CFG is given in a later section.

The conversion scheme enforces that terminals and non-terminals (Xi) remain
in the same place in the generated production ruleA(s0, s

′

0) as in the original
production ruleA.

The variabless0 ands′0 indicate which structure symbols are expected at the
start and the end of the current input string. The variablesY and Y ′ indicate
which structure symbols must be matched at the start and at the end of the current
production rule.

As discussed earlier, ambiguity with respect to matching the brackets can oc-
cur with square brackets and round brackets in combination with unit-rules. This
ambiguity is prevented by matching the structure symbols assoon as this is possi-
ble. The values ofY andY ′ will therefore correspond when this is possible with
s0 ands′0.

In the next two paragraphs the influence ofs0 and s′0 on Y and s1 will be
discussed. The situation forY ′ ands′m is analogous, instead of the conditions
of 1. the conditions of 2. will be used. The relevant conditions of the conversion
scheme are mentioned at the end of each paragraph.

3.4.1 The influence ofs0 and s′0 on Y

When a square bracket without a type is expected (s0 = [), this symbol can be
matched in every production rule and thus the value ofY must equals0. This is
also the case if a typified square bracket is expected with a type corresponding
with the current production rule,s0 = [A (1a).

When a pair of round brackets without a type is expected (s0 = (ands′0 =)),
these structure symbols can be matched in every production rule. If the production
rule is a unit-rule or starts and/or ends with a terminal, thevalues ofY andY ′

must equal the values ofs0 ands′0. If this is not the case, the values ofY andY ′

must equal the values ofs0 ands′0 or must both be equal toε. Since the values
of s0 ands′0 do not have to apply to the same chunk and can be matched later,the
values ofY andY ′ can also be equal toε. The same arguments can be applied
for a situation in which a pair of typified round brackets is expected with a type
corresponding to the current production rule,s0 = (A ands′0 =)A (1c,d).

If no structure symbol can be matched,s0 = ε, Y is left out (1g,h).
Finally, if a typified bracket is expected with a type not corresponding to the

current production rule, it is not possible to match this structure symbol in the
current production rule. This is also the case if a matchableopening round bracket
is expected without the matchable closing round bracket. Ifthe right-hand side

10 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

of the production rule does not start with a terminal, the value ofY must equal
ε (1b,e,f). In the other case no production rule is generated, becausethe typified
bracket cannot be matched.

3.4.2 The influence ofs0 and s′0 on s1

If no structure symbol can be matched, the current input stringw may not start with
a structure symbol. If the right-hand side of the current production ruleA starts
with a non-terminalB, the start ofw is parsed with the production rule belonging
to B. Sincew may not start with a structure symbol, the production rule ofB may
not start with a structure symbol. Therefore the value ofs1 must be equal toε (1h).

If a typified bracket of a different type thanA is expected at the start ofw, this
structure symbol cannot be matched in the current production rule. This is also the
case if a matchable opening round bracket is expected without a matchable closing
round bracket. In these cases the value ofs0, like in the previous situation, must
be passed on toB (s1 = s0) where the structure symbol can possibly be matched
(1b,e,f).

If a pair of round brackets can be matched and the right-hand side of the non-
unit production rule starts and ends with a non-terminal, itis also possible to pass
on the round brackets. In that situations1 must be equal tos0. This has to be
possible, becauses0 ands′0 can apply to different chunks and therefore should be
matched later. Only in the previous three situations, the value ofs1 is specified. If
a structure symbol is matched in the current production rule, the value ofs1 is free
(1a,c).

The value of the variables′1 is free if the right-hand side of the production rule
does not consist of one element (being a non-terminal). The values of the other
variablessi ands′i for 1 < i < m are always free.

3.4.3 Free variables

If the value of one or more variables (si ands′i) is free, this results in the generation
of multiple production rules for the sameA(s0, s

′

0). For every possible combina-
tion of variable valuessi ands′i a production rule must exist. This is illustrated by
the following production rule (the complete CFG consists oftwo non-terminals):

A → B b

We limit ourselves to the generated production rules forA([B, ε). This means that
at the beginning a typified bracket is expected unequal to thecurrent type (B 6= A)
and at the end no structure symbol may be present:

Parsing partially bracketed input 11

Figure 2:Conversion of generated parse trees (left: BCFG, right: CFG)

A([B, ε) → B([B, ε) b
A([B, ε) → B([B,)) b
A([B, ε) → B([B,)A) b
A([B, ε) → B([B,)B) b
A([B, ε) → B([B,]) b
A([B, ε) → B([B,]A) b
A([B, ε) → B([B,]B) b

If there are more free variables present (si or s′i), this results in a significant in-
crease of the number of production rules ofG. This will be explained in more
detail later.

Several examples of parsing an annotated input string by a BCFG are given in
appendix A (downloadable from: http://www.martijnwieling.nl).

3.5 Converting generated parse trees

After the annotated input string has been parsed according to the BCFG, the final
step is to convert the BCFG parse trees to CFG parse trees. This can be realized
very easily by applying the following two steps (this is alsoillustrated in figure 2):

• EveryA(si, s
′

i) is replaced byA

• All structure symbols (Y 6= ε) are removed

3.6 Properties of the BCFG

In this paragraph we show that the BCFG can parse all legally annotated input
strings. A legally annotated input string means that there exists a parse tree in the
CFG for the unannotated input string, which adheres to the structure indicated by
the annotation. We also show that no extra ambiguity is caused by the annotation
of the input string with structural information.

The conversion scheme enforces that terminal and non-terminal symbols re-
main in the same order as in the CFG. The only difference between the CFG and

12 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

the BCFG is therefore the use of structural information. We therefore will focus
on this aspect in the following.

• Property 1: The BCFG can parse all input strings which can be constructed
with the CFG with the addition of legal structural information

Proof : The conversion scheme stores (by usings0 ands′0) the structure symbols
with which the current input string may start and end. Because of (s0, s

′

0) ∈
Ωb × Ωb′ all combinations of matching structure symbols are presentfor every
production rule and the current input string may therefore start and end with all
possible structure symbol combinations. Because of(si, s

′

i) ∈ Ωb × Ωb′ , the
non-terminals (parsing sub-strings) on the right-hand side of every production rule
may also start and end with all possible structure symbol combinations. The only
exception is thats1 ands′m may depend ons0 ands′0 respectively, but this is only
the case when they indicate structure symbols which are expected at the start or
end of the current input string (and for this case all possible explanations were
possible).

Since a square bracket or a pair of round brackets can be matched only if it does
not have a type, or has a type corresponding with the current production rule (see
condition a and c), only input strings can be parsed which have a legal annotation.

• Property 2: The BCFG does not generate CFG-equivalent parse trees for an
input string.

Proof : CFG-equivalence of two BCFG parse trees means that if both BCFG parse
trees are converted to CFG parse trees (see the previous paragraph) these parse
trees are identical.

Assume there exist two BCFG parse trees for a certain annotated input string
which are CFG-equivalent. In that case, it is necessary thata structure symbol is
present in different places in the parse tree. This means that it must be possible to
ignore a structure symbol when it can be matched first and subsequently match it
in a later stage (without parsing terminals in between).

To ignore a matchable opening square bracket, the corresponding variable (s0)
must be equal toε (see condition g and h). This results ins1, if it is present, being
equal toε. As a consequence, the values0 of the production ruleX1 will also
be equal toε. This process will repeat itself. To parse the input string correctly,
a terminal must be matched (see condition g). This shows thatit is not possible
to ignore a matchable opening square bracket and match it in alater stage, before
matching a terminal.

The case for a matchable closing square bracket is identical, with s0 replaced
by s′0, s1 by s′m andX1 by Xm.

The same arguments (fors0 and s′0) hold for a pair of round brackets if the
right-hand side of the production rule consists of one non-terminal. If this is not
the case (condition d) round brackets can be ignored, but cannever be matched
again defining the same chunk. No production rules are generated where a single
round bracket can be matched.

Parsing partially bracketed input 13

As we have shown, it is not possible to ignore a matchable structure symbol and
match it in a later stage without matching a terminal in between. This contradicts
our assumption and we can conclude that there are no CFG-equivalent parse trees
generated for a certain annotated input string.

3.7 Number of generated production rules

The BCFG will consist of a large number of production rules which depends on
the number of non-terminals (N) in the CFG, the number of non-terminals (Z)
in the right-hand side of every single production rule and the type ofX1 andXm

(terminal or non-terminal). Anε-production rule in the CFG will only generate a
single production rule in the BCFG.

Four other cases can be distinguished:

1. X1 andXm are both terminals

2. X1 is a terminal andXm is a non-terminal, or vice versa

3. X1 andXm are both non-terminals andm > 1

4. X1 is a non-terminal andm = 1

When a production rule only consists of terminals, 11 production rules will be
generated in the BCFG. In this case no ambiguity problem exists and the same
production rules are generated as forGf (section 3). WhenZ non-terminals are
present in the production rule (not at the start and the end),2Z free variables are
present (si ands′i). Every free variable has2N + 3 possible values (|Ωb| or |Ωb′ |).
The number of generated production rules in the BCFG for a production rule in the
CFG which starts and ends with a non-terminal is therefore given by the following
formula:

C0 = 11 · (2N + 3)2Z (1)

The total number of generated production rules in the BCFG for a production rule
of the CFG beginning with a terminal and ending with a non-terminal (or vice
versa) is given by the following formula1:

C1 = (22N + 27) · (2N + 3)(2Z−1) (2)

For a production rule of the CFG which starts and ends with a non-terminal and
m > 1, the following formula is used to calculate the number of generated pro-
duction rules in the BCFG1:

C2 = (44N2 + 108N + 67) · (2N + 3)(2Z−2) (3)

When a production rule of the CFG consists only of one non-terminal (m = 1),
the number of production rules in the BCFG is given by the following formula1:

C3 = 44N2 + 108N + 65 (4)
1A precise calculation is given in appendix B (downloadable from: http://www.martijnwieling.nl)

14 Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord

For C0, C1, C2 andC3 it is clear that the number of generated production rules
equalsO(N2Z). The total number of generated production rules in the BCFG
based on a CFG consisting of

• p production rules whereX1 andXm are both terminals

• q production rules whereX1 is a terminal andXm is a non-terminal (or vice
versa)

• r production rules whereX1 andXm are both non-terminals andm > 1

• s production rules whereX1 is a non-terminal andm = 1

• t ε-production rules

thus equals:

|G| = p · C0 + q · C1 + r · C2 + s · C3 + t

If the original CFG is converted to Chomsky Normal Form, the right-hand side of
every production rule in the CFG consists of one terminal or two non-terminals.
In this caseq, s andt equal 0, the value ofZ equals 0 forC0 and the value ofZ
equals 2 forC2. The total number of generated production rulesGc then equals:

|Gc| = p · C0 + r · C2

with C0 = 11 andC2 = (44N2 + 108N + 67) · (2N + 3)2. The number of gen-
erated production rules inGc thus has a polynomial degree,O(N4).

If the CFG is not in Chomsky Normal Form, but the highest number of
non-terminals in the right-hand side of a production rule ofthe CFG is known
(Zmax), the number of generated production rules also has a polynomial degree,
O(N2Zmax).

4 Discussion

We did not investigate in what way the size of the BCFG influences the time needed
to parse an input string. Both the Earley-algorithm and the CYK-algorithm have
a time complexity depending on the size of the grammar and therefore will be
influenced. However, it is likely that new production rules can be generated on the
fly and thus will alleviate the problem.

When it is undesirable to use a BCFG with a large number of production
rules, it is also possible to use the ambiguous conversion scheme. After the parse
trees have been generated according to this BCFG (Gf with the addition thatε-
production rules remain the same and do not get any structuresymbols), the parse
trees have to be converted to CFG parse trees by removing the structure symbols.
In a subsequent sweep duplicate parse trees can be then be removed.

In our study we only allow structural information for non-empty chunks. If
structural information is also desired for empty chunks, the conversion scheme

Parsing partially bracketed input 15

cannot be adapted very easily. This is illustrated with the following example. In
the production ruleA(s0, s

′

0) → X1(s1, s
′

1) X2(s2, s
′

2) the value ofX1 equalsε.
A square bracket without a type can be matched in the production rule ofX1 (if
s0 = [), but it is also possible to match the square bracket in the production rule
X2 while not matching it inX1 (s1 = ε). Since the value ofs0 does not influence
the value ofs2, spurious ambiguity can occur here.

5 Conclusion

We showed how an input string can be annotated with structural information and
subsequently can be parsed with a BCFG. A conversion scheme was given to con-
vert a CFG to a BCFG with the important property that the resulting BCFG does
not generate spurious ambiguous parse trees.

If an input string is parsed with a CFG a large number of parse trees can be
generated. The number of parse trees can be reduced by annotating the input string
with structural information, parsing the annotated input string with the converted
CFG (the BCFG) and converting the resulting BCFG parse treesto CFG parse
trees. The number of parse trees is only reduced when the CFG contains parse
trees for the original input string which do not comply to theindicated structure
(these parse trees will not be generated by the BCFG).

References

Ginsburg, S. and Harrison, M. A.(1967), Bracketed context-free languages.,J.
Comput. Syst. Sci. 1(1), 1–23.

Knuth, D. E.(1967), A characterization of parenthesis languages,Information and
Control 11(3), 269–289.

McNaughton, R.(1967), Parenthesis grammars,Journal of the ACM 14(3), 490–
500.

Pereira, F. and Schabes, Y.(1992), Inside-outside reestimation from partially
bracketed corpora,Proceedings of the 30th annual meeting on Association
for Computational Linguistics, Association for Computational Linguistics,
Morristown, NJ, USA, pp. 128–135.

Ramshaw, L. and Marcus, M.(1995), Text chunking using transformation-based
learning,in D. Yarovsky and K. Church (eds),Proceedings of the Third
Workshop on Very Large Corpora, Association for Computational Linguis-
tics, Somerset, New Jersey, pp. 82–94.

Stolcke, A.(1995), An efficient probabilistic context-free parsing algorithm that
computes prefix probabilities,Comput. Linguist. 21(2), 165–201.

van der Beek, L., Bouma, G., Malouf, R. and van Noord, G.(2002), The Alpino
dependency treebank,Computational Linguistics in the Netherlands.

van Noord, G., Schuurman, I. and Vandeghinste, V.(2006), Syntactic annotation of
large corpora in STEVIN,LREC 2006, Genua.

