



# **Basic statistical tests**

Martijn Wieling University of Groningen

### **This lecture**

- Dataset for this lecture
- Comparing one or two groups: t-test
  - Non-parametric alternatives: Mann-Whitney U and Wilcoxon signed rank
- · Assessing the dependency between two categorical variables:  $\chi^2$  test
- Comparing more than two groups: ANOVA

### Some basic points

- This lecture focuses on *how-to-use* and *when-to-use*, rather than on the underlying calculations
  - If you want more information about the tests and concepts illustrated in this lecture, I recommend the books from Levshina, Winter or (free) Navarro
- Make sure to report **effect size** as significance is dependent on sample size

| DIFFERENCE (IN s) | n      | p    |
|-------------------|--------|------|
| 0.01              | 40,000 | 0.05 |
| 0.10              | 400    | 0.05 |
| 0.25              | 64     | 0.05 |
| 0.54              | 16     | 0.05 |



Go to www.menti.com/8a981a

### What is a p-value?

🞽 Mentimeter

| 0                                              | 0                                              | 0                                              | 0                                              | 0 |  |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---|--|
| Probability<br>H0 is true<br>given the<br>data | Probability<br>Ha is true<br>given the<br>data | Probability<br>of the data<br>given H0<br>true | Probability<br>of the data<br>given Ha<br>true | ? |  |



Press ENTER to show correct

-

### **Dataset for this lecture**

load("dat.rda")
head(dat)

| #   | Speaker  | Language | PronDist  | PronDistCat | LangDist | LangDistAlt | Age | Sex | AEO | LR | NrLang |
|-----|----------|----------|-----------|-------------|----------|-------------|-----|-----|-----|----|--------|
| # 1 | arabic1  | arabic   | 0.185727  | Different   | 0.63699  | 0.44864     | 38  | F   | 12  | 4  | 0      |
| # 2 | arabic10 | arabic   | -0.172175 | Similar     | 0.63699  | 0.44864     | 26  | М   | 5   | 2  | 2      |
| # 3 | arabic13 | arabic   | -0.035423 | Similar     | 0.63699  | 0.44864     | 25  | М   | 15  | 1  | 2      |
| # 4 | arabic12 | arabic   | 0.372547  | Different   | 0.63699  | 0.44864     | 32  | М   | 11  | 8  | 0      |
| # 5 | arabic17 | arabic   | -0.175237 | Similar     | 0.63699  | 0.44864     | 35  | М   | 15  | 0  | 1      |
| # 6 | arabic18 | arabic   | 0.168120  | Different   | 0.63699  | 0.44864     | 18  | М   | 6   | 0  | 1      |

### **Dataset structure**

str(dat) # 'data.frame': 712 obs. of 11 variables: : Factor w/ 712 levels "afrikaans1", "afrikaans2",..: 21 22 25 24 27 28 26 30 31 23 ... \$ Speaker # \$ Language : Factor w/ 159 levels "afrikaans", "agni", ...: 7 7 7 7 7 7 7 7 7 7 ... # \$ PronDist : num 0.1857 -0.1722 -0.0354 0.3725 -0.1752 ... # \$ PronDistCat: Factor w/ 2 levels "Different", "Similar": 1 2 2 1 2 1 1 2 2 2 ... # \$ LangDist : num 0.637 0.637 0.637 0.637 0.637 ... # \$ LangDistAlt: num 0.449 0.449 0.449 0.449 0.449 ... # : num 38 26 25 32 35 18 22 36 23 30 ... \$ Aqe # \$ Sex : Factor w/ 2 levels "F", "M": 1 2 2 2 2 2 2 1 1 ... # \$ AEO : num 12 5 15 11 15 6 16 12 10 14 ... # \$ LR # : num 4218000104... \$ NrLang : int 0 2 2 0 1 1 2 2 2 1 ... #

### Comparing one or two groups: t-test

- $\cdot$  Values between two groups (or vs. value) can be compared using the t-test
- Assumptions:
  - Randomly selected sample(s)
  - Independent observations (except for paired data)
  - Data has interval scale (difference between two values is meaningful) or ratio scale (meaningful difference and true 0)
    - E.g., interval scale: temperature in C; ratio scale: length in cm.
  - Data in sample(s) normally distributed (for  $N\leq 30$ )
  - Variances in samples homogeneous (Welch's adjustment, default in **R**, corrects for this)
  - Note: *Likert scale* is ordinal data, so t-test in principle not adequate
    - But in practice not problematic (De Winter & Dodou, 2011)
- Visualize the data if possible (facilitates interpretation)



Go to www.menti.com/8a981a

# What is a good way to visualize the values of two groups?



🞽 Mentimeter

### *t*-test

- Result of t-test is a t-value, which is compared to the appropriate t-distribution
- $\cdot t$ -distribution depends on degrees of freedom (therefore: report dF!)



### Group mean vs. value: visualization

```
german <- droplevels(dat[dat$Language == "german", ])
boxplot(german$PronDist)
abline(h = 0, col = "red", lty = 2)</pre>
```



### Group mean vs. value: one sample t-test

t.test(german\$PronDist, mu = 0)

```
#
# One Sample t-test
#
# data: german$PronDist
# t = -5.33, df = 21, p-value = 2.7e-05
# alternative hypothesis: true mean is not equal to 0
# 95 percent confidence interval:
# -0.208787 -0.091657
# sample estimates:
# mean of x
# -0.15022
```

### One sample t-test: effect size

library(lsr)

cohensD(german\$PronDist, mu = 0)

# [1] 1.1373

- $\cdot$  Cohen's d measures the difference in terms of the number of standard deviations
  - Rough guideline: Cohen's d < 0.3: small effect size; 0.3 0.8: medium; > 0.8: large

# Try it yourself!

• Install the *Mathematical Biostatistics Boot Camp* swirl course:

library(swirl)
install\_from\_swirl("Mathematical\_Biostatistics\_Boot\_Camp")

- Run **swirl()** in RStudio and finish the following lesson of the *Mathematical Biostatistics Boot Camp* course:
  - Lesson 1: One Sample t-test

### **Comparing paired data: visualization**

```
# aggregate data per language (159 languages)
lang <- aggregate(cbind(LangDist, LangDistAlt) ~ Language, data = dat, FUN = mean)
par(mfrow = c(1, 2))
boxplot(lang[, c("LangDist", "LangDistAlt")])
boxplot(lang$LangDist - lang$LangDistAlt, main = "Pairwise differences")</pre>
```



#### Pairwise differences

### Paired samples t-test

t.test(lang\$LangDist, lang\$LangDistAlt, paired = T)

```
#
# Paired t-test
#
# data: lang$LangDist and lang$LangDistAlt
# t = -3.73, df = 158, p-value = 0.00027
# alternative hypothesis: true mean difference is not equal to 0
# 95 percent confidence interval:
# -0.085703 -0.026367
# sample estimates:
# mean difference
# -0.056035
```



Go to www.menti.com/8a981a

# Which statement is true for the paired t-test applied to a small dataset (N=10)?

🞽 Mentimeter



 $\leftrightarrow$ 

-

### Paired samples t-test = one sample t-test

t.test(lang\$LangDist - lang\$LangDistAlt, mu = 0) # identical to one-sample test of differences

```
#
# One Sample t-test
#
# data: lang$LangDist - lang$LangDistAlt
# t = -3.73, df = 158, p-value = 0.00027
# alternative hypothesis: true mean is not equal to 0
# 95 percent confidence interval:
# -0.085703 -0.026367
# sample estimates:
# mean of x
# -0.056035
```

cohensD(lang\$LangDist, lang\$LangDistAlt, method = "paired") # effect size

#### # [1] 0.29585

### **Comparing two groups: visualization**

rusger <- droplevels(dat[dat\$Language %in% c("russian", "german"), ])
boxplot(PronDist ~ Language, data = rusger)</pre>



## Comparing two groups: independent samples $t\mbox{-test}$

```
t.test(PronDist ~ Language, data = rusger, alternative = "two.sided")
```

```
#
# Welch Two Sample t-test
#
# data: PronDist by Language
# t = -3.56, df = 42.5, p-value = 0.00092
# alternative hypothesis: true difference in means between group german and group russian is not equal to
# 95 percent confidence interval:
# -0.267719 -0.074108
# sample estimates:
# mean in group german mean in group russian
# -0.150222 0.020691
```

```
cohensD(PronDist ~ Language, data = rusger)
```

#### # [1] 1.0166

### Reporting results of a t-test

• Pronunciation difference from native English was smaller for the German speakers (mean: -0.15, sd: 0.132) than for the Russian speakers (mean: 0.02, sd: 0.194). The difference was -0.17 (Cohen's d: 1.02, large effect) and reached significance using an independent samples Welch's unequal variances t-test at an  $\alpha$ -level of 0.05, t(42.5) = -3.56, p < 0.001.

### **Assumptions met?**

- ✓ Randomly selected sample(s)
- ✓ Independent observations (except for pairs)
- ✓ Data has interval or ratio scale
- · ? Variance in samples homogeneous (corrected with Welch's adjustment)
- $\cdot\,$  ? Data in compared samples are **normally distributed** (for  $N\leq 30$ )

## **Testing if variances are equal (homoscedasticity)**

Testing homoscedasticity using Levene's test

```
library(car)
leveneTest(PronDist ~ Language, data = rusger)

# Levene's Test for Homogeneity of Variance (center = median)
# Df F value Pr(>F)
# group 1 5 0.03 *
# 45
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Levene's test shows that the variances are different and the default Welch's adjustment is warranted
  - But note that the Welch's t-test can always be used as it is more robust and power is comparable to that of the normal t-test

### Assessing normality: Russian data (1)

• For investigating normality, a normal quantile plot can be used

```
russian <- droplevels(dat[dat$Language == "russian", ])
qqnorm(russian$PronDist)  # plot actual values vs. theoretical quantiles
qqline(russian$PronDist)  # plot reference line of normal distribution</pre>
```



Normal Q-Q Plot

### **Assessing normality: Russian data (2)**

• Alternatively, one can use the Shapiro-Wilk test of normality

shapiro.test(russian\$PronDist)

```
#
#
Shapiro-Wilk normality test
#
# data: russian$PronDist
# W = 0.958, p-value = 0.38
```



Go to www.menti.com/8a981a

### Which approach is better to assess normality?

🞽 Mentimeter

| <br>0                 | 0                           | 0                | 0 |  |  |
|-----------------------|-----------------------------|------------------|---|--|--|
| Shapiro-<br>Wilk test | Normal<br>quantile<br>plot  | Levene's<br>test | ? |  |  |
|                       | Press ENTER to show correct |                  |   |  |  |

26/72

### Assessing normality: German data (1)

qqnorm(german\$PronDist)
qqline(german\$PronDist)



**Theoretical Quantiles** 

## Assessing normality: German data (2)

shapiro.test(german\$PronDist)

```
#
#
Shapiro-Wilk normality test
#
# data: german$PronDist
# W = 0.929, p-value = 0.12
```

- Sensitivity to sample size of the Shapiro-Wilk test is clear: I would judge the data as *non-normal* on the basis of the normal quantile plot
- Given the small size of the sample (N = 22\$), a non-parametric alternative is needed

### **Non-parametric alternatives**

- Non-parametric fallbacks
  - One sample t-test and paired t-test: Wilcoxon signed rank test
  - Independent samples *t*-test: Mann-Whitney U test (= Wilcoxon rank sum test)
  - In both cases: wilcox.test (similar to t.test)

## Comparing two groups: Mann-Whitney U test (1)

par(mfrow = c(1, 2)) # visualization indicates non-parametric test necessary
qqnorm(russian\$PronDist, main = "russian")
qqline(russian\$PronDist)
qqnorm(german\$PronDist, main = "german")
qqline(german\$PronDist)



## **Comparing two groups: Mann-Whitney U test (2)**

(model <- wilcox.test(PronDist ~ Language, data = rusger)) # default 2-tailed</pre>

```
#
#
Wilcoxon rank sum exact test
#
# data: PronDist by Language
# W = 140, p-value = 0.0035
# alternative hypothesis: true location shift is not equal to 0
```

```
wilcox.effsize <- function(pval2tailed, N) {
    (r <- abs(qnorm(pval2tailed/2)/sqrt(N))) # r = z / sqrt(N)
}</pre>
```

```
# rough guideline: r around 0.1 (small), > 0.3 (medium), > 0.5: large
wilcox.effsize(model$p.value, nrow(rusger))
```

#### # [1] 0.42616

### **Reporting results of Mann-Whitney U (or Wilcoxon)**

• Pronunciation difference from native English was smaller for the German speakers (median value: -0.16) than for the Russian speakers (median value: 0.006). The effect size r of the difference was 0.43 (medium) and reached significance using a Mann-Whitney U test (U = 140, with  $n_g = 22$  and  $n_r = 25$ ) at an  $\alpha$ -level of 0.05 (p = 0.003).



Go to www.menti.com/8a981a

### Why report effect size?

🞽 Mentimeter

| 0                 | 0                           | 0          |
|-------------------|-----------------------------|------------|
| to evaluate       | to evaluate                 | for .      |
| tne<br>importance | now statist.<br>significant | with other |
| of the effect     | an effect is                | studies    |
|                   |                             |            |

 $\leftrightarrow \rightarrow$ 

Press ENTER to show correct

33/72

### Group mean vs. value: Wilcoxon signed rank (1)

# visualization indicates non-parametric necessary

qqnorm(german\$PronDist)

qqline(german\$PronDist)



**Theoretical Quantiles** 

### Group mean vs. value: Wilcoxon signed rank (2)

(model <- wilcox.test(german\$PronDist, mu = 0))</pre>

```
#
#
Wilcoxon signed rank exact test
#
# data: german$PronDist
# V = 20, p-value = 0.00018
# alternative hypothesis: true location is not equal to 0
```

wilcox.effsize(model\$p.value, nrow(german))

# [1] 0.79948

### **Comparing paired data: Wilcoxon signed rank**

# No non-parametric test necessary

qqnorm(lang\$LangDist - lang\$LangDistAlt)

qqline(lang\$LangDist - lang\$LangDistAlt)



**Theoretical Quantiles**
### **Comparing paired data: Wilcoxon signed rank**

 Using a Wilcoxon signed rank test is not necessary, given the size of the dataset (159 languages) and the normal distribution, but it is included for completeness

(model <- wilcox.test(lang\$LangDist, lang\$LangDistAlt, paired = TRUE))</pre>

```
#
#
Wilcoxon signed rank test with continuity correction
#
# data: lang$LangDist and lang$LangDistAlt
# V = 4362, p-value = 0.00059
# alternative hypothesis: true location shift is not equal to 0
```

wilcox.effsize(model\$p.value, nrow(lang))

# [1] 0.27242

# Dependency between two cat. variables: $\chi^2$ test

- Requirements:
  - Sample randomly selected from the population of interest
  - Independent observations
  - Every observation can be classified into exactly one category
  - Expected frequency for each combination at least 5 (or: Fisher's exact test)
- Intuition: compare expected frequencies with observed frequencies
  - Larger differences between expected and observed: more likely two categorical variables dependent



```
languages <- c("farsi", "swedish", "polish")
dat3 <- droplevels(dat[dat$Language %in% languages, ])
(tab <- table(dat3$PronDistCat, dat3$Language))</pre>
```

```
#
# farsi polish swedish
# Different 6 6 1
# Similar 4 5 9
```

```
chisq.test(tab)
```

```
#
#
Pearson's Chi-squared test
#
# data: tab
# X-squared = 6.25, df = 2, p-value = 0.044
```

test: effect size

cramersV(tab) # from library(lsr)

#### # [1] 0.4489

- Rough guidelines for effect size:
  - Small effect: w = 0.1
  - Medium effect: w=0.3
  - Large effect: w = 0.5
  - With  $w = V imes \sqrt{min(R,C)-1}$ 
    - With more rows  $\ensuremath{\mathbbm B}$  and columns  $\ensuremath{\mathbbm C}$  , a lower Cramer's V can still be the same size of effect

# $\chi^2$ test: reporting results

• Fisher's exact test of independence was performed to examine the relation between Language and Pronunciation Distance Category. The relation between the two variables was significant in a sample size of 31 at an  $\alpha$ -level of 0.05,  $\chi^2(2) = 6.25, p = 0.04$ . The effect size was medium, with Cramer's V: 0.45.

# However, $\chi^2$ test not appropriate: Fisher's exact test

chisq.test(tab)\$expected # warning as not all expected values >= 5

# Warning in chisq.test(tab): Chi-squared approximation may be incorrect

# farsi polish swedish
# Different 4.1935 4.6129 4.1935
# Similar 5.8065 6.3871 5.8065

#

fisher.test(tab) # solution: use Fisher's exact test as the appropriate alternative

```
#
#
Fisher's Exact Test for Count Data
#
# data: tab
# p-value = 0.053
# alternative hypothesis: two.sided
```

#### **ANOVA for differences between 3 or more groups**

- Intuition of ANOVA: compare between-group variation and within-group variation
  - If between-group variation ( $SS_b$ : sum of squares) is large relative to within-group variation ( $SS_w$ ) the difference is more likely to be significant
  - See this freely downloadable, well-written statistics book



Figure 14.2: Graphical illustration of "between groups" variation (panel a) and "within groups" variation (panel b). On the left, the arrows show the differences in the group means; on the right, the arrows highlight the variability within each group.

#### **Assumptions for ANOVA**

- Randomly selected sample(s)
- Independent observations in the groups
- Data has interval scale or ratio scale
- Data in each sample is normally distributed and/or equal sample sizes
- Variance in samples homogeneous

#### Differences between 3+ groups: one-way ANOVA (1)

# start with visualization

boxplot(PronDist ~ Language, data = dat3)



Language

### Differences between 3+ groups: one-way ANOVA (2)

```
result <- aov(PronDist ~ Language, data = dat3)
# alternative if variances are not equal: oneway.test(), alternative if
# non-normal distribution: kruskal.test()</pre>
```

summary(result) # is the ANOVA significant?

| #             | Df  | Sum Sq | Mean Sq | F value  | Pr(>F) |      |     |     |   |   |   |
|---------------|-----|--------|---------|----------|--------|------|-----|-----|---|---|---|
| # Language    | 2   | 0.213  | 0.1067  | 4.16     | 0.026  | *    |     |     |   |   |   |
| # Residuals   | 28  | 0.718  | 0.0256  |          |        |      |     |     |   |   |   |
| #             |     |        |         |          |        |      |     |     |   |   |   |
| # Signif. cod | es: | 0      | 0.001   | !**! 0.( | )1 '*' | 0.05 | '.' | 0.1 | ۲ | • | 1 |

etaSquared(result) # from library(lsr); small: 0.02, medium: 0.13, large: 0.26

```
# eta.sq eta.sq.part
```

# Language 0.22908 0.22908



Go to www.menti.com/8a981a

#### Can an ANOVA be used to compare 2 groups?

 
 0
 0
 0

 Yes, results similar as t-test
 Yes, but different results than t-test
 No
 ?
 Mentimeter

#### **ANOVA: reporting results**

- At an  $\alpha$ -level of 0.05, a one-way ANOVA showed a significant effect of Language on Pronunciation Difference from English: F(2, 28) = 4.16 (p = 0.03). The effect size of Language, partial eta squared  $\eta_p^2$ , was equal to 0.23 (medium).
  - As the F-distribution depends on two values (dF1 and dF2), both values need to be reported
    - dF1: number of levels of the categorical variable 1
    - dF2: number of observations number of levels of the categorical variable

#### **ANOVA post-hoc test**

posthocPairwiseT(result) # from library(lsr)

```
#
# Pairwise comparisons using t tests with pooled SD
#
# data: PronDist and Language
#
# farsi polish
# polish 0.63 -
# swedish 0.04 0.06
#
# P value adjustment method: holm
```

# alternative: TukeyHSD(result)

#### **ANOVA post-hoc: reporting results**

• Post-hoc comparisons were conducted using pairwise *t*-tests using the Holm method to correct for multiple comparisons. The post-hoc comparison (using an  $\alpha$ -level of 0.05) revealed that Swedish had a lower Pronunciation Difference from English (mean: -0.172, sd: 0.126) than Farsi (mean: 0.021, sd: 0.156, p = 0.04), but not Polish (mean: -0.013, sd: 0.188, p = 0.06). Furthermore, Farsi and Polish did not differ significantly (p = 0.63).



Go to www.menti.com/8a981a

# If an ANOVA test is significant, does at least one pair Mentimeter differ significantly?



-

#### **Testing assumptions: variances equal?**

• Testing homoscedasticity using Levene's test

leveneTest(PronDist ~ Language, data = dat3)

```
# Levene's Test for Homogeneity of Variance (center = median)
# Df F value Pr(>F)
# group 2 0.69 0.51
# 28
```

· Levene's test shows the variances are similar

### Assessing normality (1)

```
par(mfrow = c(1, 3))
for (lang in levels(dat3$Language)) {
    qqnorm(dat3[dat3$Language == lang, ]$PronDist, main = lang)
    qqline(dat3[dat3$Language == lang, ]$PronDist)
}
```



### Assessing normality (2)

aggregate(PronDist ~ Language, data = dat3, function(x) shapiro.test(x)\$p.value)

# Language PronDist
# 1 farsi 0.035895
# 2 polish 0.922943
# 3 swedish 0.040296

table(dat3\$Language) # unequal sample sizes

```
#
# farsi polish swedish
# 10 11 10
```

 Non-normal and unequal sample sizes, so Kruskal-Wallis test should be used instead

#### **Kruskal-Wallis rank sum test**

kruskal.test(PronDist ~ Language, data = dat3)

```
#
#
Kruskal-Wallis rank sum test
#
# data: PronDist by Language
# Kruskal-Wallis chi-squared = 6.44, df = 2, p-value = 0.04
```

#### Kruskal-Wallis rank sum test: post-hoc tests

library(PMCMR)

```
posthoc.kruskal.dunn.test(PronDist ~ Language, data = dat3)
```

```
#
# Pairwise comparisons using Dunn's-test for multiple
# comparisons of independent samples
#
# data: PronDist by Language
#
# farsi polish
# polish 0.634 -
# swedish 0.051 0.099
#
# P value adjustment method: holm
```

 Note that even though the omnibus test shows there to be a significant effect of Language on Pronunciation Difference from English, none of the levels appear to differ significantly (i.e. they represent different tests)

#### **Kruskal-Wallis: effect size**

- Effect size for each pair can be obtained using Mann-Whitney U procedure
- For example:

```
pairs2 <- dat3[dat3$Language %in% c("swedish", "farsi"), ]
model <- wilcox.test(PronDist ~ Language, data = pairs2)
wilcox.effsize(model$p.value, nrow(pairs2))</pre>
```

# [1] 0.5075



Go to www.menti.com/8a981a

#### When doing a two-way ANOVA (instead of oneway), should the data be balanced?

🞽 Mentimeter



#### Multi-way anova: first some remarks

- Multiple types if data is **unbalanced** (balanced data: all types equal)
  - Type I (used in aov): SS(A), SS(B | A), SS(A\*B | B, A)
    - This approach is order-dependent and rarely tests a hypothesis of interest, as the effects (except for the final interaction) are obtained without controlling for the other effects in the model
  - Type II: SS(A | B), SS(B | A)
    - This approach is valid if no interaction is necessary
  - Type III: SS(A | B, A\*B), SS(B | A, A\*B)
    - (This is the default SPSS approach)
    - Note: main effects are rarely interpretable when the interaction is significant
    - If interactions are not significant, Type II is more powerful
    - Contrasts need to be orthogonal (default contrasts in **R** are not)

#### **Present data not balanced**

dat2 <- droplevels(dat[dat\$Language %in% c("mandarin", "dutch"), ]) # new dataset table(dat2\$Language, dat2\$Sex)

| # |          |    |   |  |
|---|----------|----|---|--|
| # |          | F  | М |  |
| # | dutch    | 7  | 7 |  |
| # | mandarin | 14 | 9 |  |

...

```
# normality OK
aggregate(PronDist ~ Language, data = dat2, function(x) shapiro.test(x)$p.value)
# Language PronDist
# 1 dutch 0.39841
```

# 2 mandarin 0.34953

#### **Interaction plot**

with(dat2, interaction.plot(Language, Sex, PronDist, col = c("blue", "red"), type = "b"))



Language

### Multi-way anova: Type I

summary(aov(PronDist ~ Language \* Sex, data = dat2))

# Df Sum Sq Mean Sq F value Pr(>F)
# Language 1 0.347 0.347 20.06 8.5e-05 \*\*\*
# Sex 1 0.005 0.005 0.30 0.59
# Language:Sex 1 0.089 0.089 5.17 0.03 \*
# Residuals 33 0.570 0.017
# --# Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

summary(result <- aov(PronDist ~ Sex \* Language, data = dat2))</pre>

| #               | Df | Sum Sq | Mean Sq 1 | F value  | Pr(>F)    |       |     |       |
|-----------------|----|--------|-----------|----------|-----------|-------|-----|-------|
| # Sex           | 1  | 0.000  | 0.000     | 0.00     | 0.95      |       |     |       |
| # Language      | 1  | 0.352  | 0.352     | 20.36    | 7.7e-05   | ***   |     |       |
| # Sex:Language  | 1  | 0.089  | 0.089     | 5.17     | 0.03      | *     |     |       |
| # Residuals     | 33 | 0.570  | 0.017     |          |           |       |     |       |
| #               |    |        |           |          |           |       |     |       |
| # Signif. codes | 5: | 0 **** | 0.001     | **' 0.01 | . '*' 0.( | )5 '. | 0.1 | <br>1 |

### Multi-way anova: Type II

Anova (result <- aov (PronDist ~ Language \* Sex, data = dat2), type = 2) # from library(car), case sensitive!

```
# Anova Table (Type II tests)
#
# Response: PronDist
# Sum Sq Df F value Pr(>F)
# Language 0.352 1 20.36 7.7e-05 ***
# Sex 0.005 1 0.30 0.59
# Language:Sex 0.089 1 5.17 0.03 *
# Residuals 0.570 33
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

etaSquared(result, type = 2)

 #
 eta.sq eta.sq.part

 #
 Language
 0.3478048
 0.3815433

 #
 Sex
 0.0051338
 0.0090241

 #
 Language:Sex
 0.0883463
 0.1354766

### Multi-way anova: Type III (appropriate)

op <- options(contrasts = c("contr.sum", "contr.poly")) # set orthogonal contrasts for unordered and ordered factors
Anova(result <- aov(PronDist ~ Language \* Sex, data = dat2), type = 3)</pre>

```
# Anova Table (Type III tests)
#
# Response: PronDist
# Sum Sq Df F value Pr(>F)
# (Intercept) 0.068 1 3.92 0.05611 .
# Language 0.320 1 18.52 0.00014 ***
# Sex 0.019 1 1.07 0.30784
# Language:Sex 0.089 1 5.17 0.02959 *
# Residuals 0.570 33
# ----
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

etaSquared(result, type = 3)

| #                         | eta.sq ( | eta.sq.part |
|---------------------------|----------|-------------|
| # Language                | 0.316338 | 0.359431    |
| # Sex                     | 0.018328 | 0.031486    |
| <pre># Language:Sex</pre> | 0.088346 | 0.135477    |

#### Multi-way anova: interpretation

model.tables(result, type = "means")

| # Tables of means      |
|------------------------|
|                        |
| # Grand mean           |
|                        |
| # -0.017218            |
| #                      |
| # Language             |
| # dutch mandarin       |
| # -0.1413 0.05828      |
| # rep 14.0000 23.00000 |
| -<br>#                 |
| # Sex                  |
| # F M                  |
| = -0.0275 - 0.003726   |
| # = 21,0000,16,0000000 |
|                        |
|                        |
| # Language:Sex         |
| # Sex                  |
| # Language F M         |
| # dutch -0.216 -0.067  |
| # rep 7.000 7.000      |
| # mandarin 0.080 0.024 |
| # rep 14.000 9.000     |
|                        |

### Multi-way anova: post-hoc tests

dat2\$LangSex <- interaction(dat2\$Language, dat2\$Sex)
newresult <- aov(PronDist ~ LangSex, data = dat2)
posthocPairwiseT(newresult) # from library(lsr)</pre>

```
#
# Pairwise comparisons using t tests with pooled SD
#
# data: PronDist and LangSex
#
# dutch.F mandarin.F dutch.M
# mandarin.F 2e-04 - - -
# dutch.M 0.125 0.086 -
# mandarin.M 0.005 0.355 0.355
#
# P value adjustment method: holm
```

#### **Multi-way ANOVA: reporting results**

· Using an  $\alpha$ -level of 0.05, a two-way ANOVA was conducted on the influence of two independent variables (language: Dutch and Mandarin, and sex: male and female) on the pronunciation differerence from English. The main effect of language was significant, F(1, 33) = 18.52 (p < 0.001), with a higher pronunciation difference from English for Mandarin speakers (mean: 0.058, sd: 0.147) than for Dutch speakers (mean: -0.141, sd: 0.12). The main effect for sex was not significant (F(1, 33) = 1.07, p = 0.31). However the interaction effect was significant (F(1, 33) = 5.17, p = 0.03) and indicated that while the female Dutch speakers had lower pronunciation differences compared to English than males, the effect was inverse for the Mandarin speakers. The effect size of language,  $\eta_p^2$ , was equal to 0.36 (large). The effect size of the interaction between sex and language,  $\eta_p^2$ , was equal to 0.14 (medium).

#### **Variants of ANOVA**

- There are several variants of ANOVA, e.g.:
  - ANCOVA: covariates can be added as control variables in the analysis
  - MANOVA: assessing the relationship between one or more predictors and **multiple** dependent variables
  - Repeated-measures ANOVA
- These are not covered further, as (mixed-effects) regression is more flexible



Go to www.menti.com/8a981a

#### How do ANOVA and regression relate?

Mentimeter

| 0                                                  | 0                                                  | 0                    | 0 |
|----------------------------------------------------|----------------------------------------------------|----------------------|---|
| Regression<br>is more<br>flexible<br>than<br>ANOVA | ANOVA is<br>more<br>flexible<br>than<br>Regression | They are<br>the same | ? |
|                                                    |                                                    |                      |   |

Press ENTER to show correct

← →

#### Recap

- In this lecture, we've covered:
  - The t-test (and non-parametric alternatives) for comparing means of 2 groups
  - The  $\chi^2$  test to assess the relationship between 2 categorical variables
  - ANOVA for comparing 3+ groups (and interactions between factorial predictors)
- Associated lab session:
  - https://www.let.rug.nl/wieling/Statistics/Basic-Tests/lab



Go to www.menti.com/8a981a

#### Please provide your opinion about this lecture in Mentimeter at most 3 words/phrases!



## **Questions?**

Thank you for your attention!

http://www.martijnwieling.nl m.b.wieling@rug.nl

