

Generalized additive models for EEG data

Martijn Wieling University of Groningen

This lecture

- \cdot Introduction
 - ERPs to study grammatical gender violations
 - Research question
- Design
- Methods (**R** code) and results
- Discussion

ERPs to study grammatical gender violations

- A P600 (a positivity 'around' 600 ms. after stimulus onset) is sensitive to grammatical violations
- An N400 (a negativity 'around' 400 ms. after stimulus onset) is modulated by semantic context and lexical properties of a word
 - The P600/N400 are found by **comparing** incorrect to correct sentences
- Native speakers appear to show a P600 for grammatical gender violations
 - But analyzed by averaging over items and over subjects!

This study

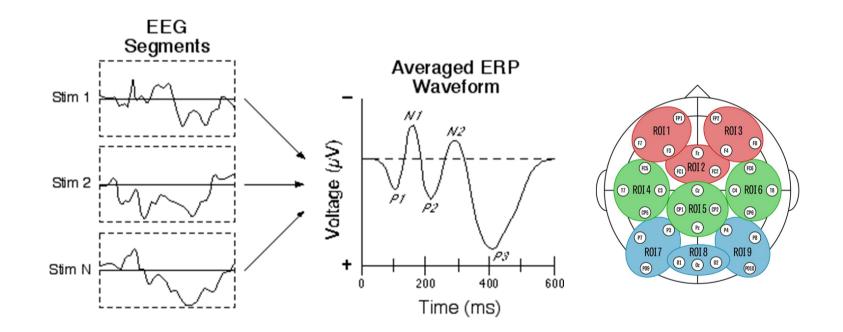
- In this study we are interested in how non-native speakers respond to grammatical gender violations (joint work with Nienke Meulman)
- Grammatical gender is very hard to learn for L2 learners
- Even though behaviorally L2 learners might show correct responses, the brain may reveal differences in processing grammatical gender

Research question

 Is the P600 for grammatical gender violations dependent on age of arrival for the L2 learners of German?

ERP data

• Today: analysis of single region of interest (ROI 8)



- 67 L2 speakers of German (Slavic L1)
- Auditory presentation of correct sentences or sentences with a grammatical gender violation (incorrect determiner; no determiners in L1)
- 48 items in each condition: 96 trials per participant (minus artifacts)
- Example:

Nach der Schlägerei ist das/*der Auge des Angestellten von der Krankenschwester versorgt worden.

[After the fight the_{neut}/*the_{masc} eye of the worker was treated by the nurse]

Data overview

load("dat.rda")

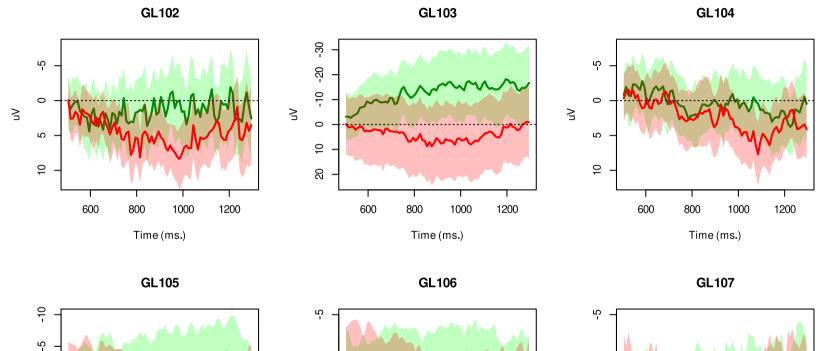
```
dat = dat[order(dat$Subject, dat$TrialNr, dat$Time), ] # sort data per trial
dat$start.event <- dat$Time == min(dat$Time) # mark the start of every new trial
head(dat)</pre>
```

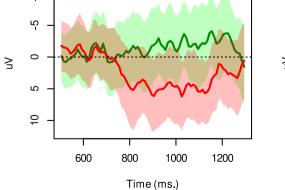
#		uV	Time	Subject	Word	TrialNr	Туре	AoArr	start	.event
#	721	8.94	505	GL102	Wald	2	incor	8		TRUE
#	722	15.56	515	GL102	Wald	2	incor	8		FALSE
#	723	21.31	525	GL102	Wald	2	incor	8		FALSE
#	724	13.32	535	GL102	Wald	2	incor	8		FALSE
#	725	19.11	545	GL102	Wald	2	incor	8		FALSE
#	726	17.96	555	GL102	Wald	2	incor	8		FALSE

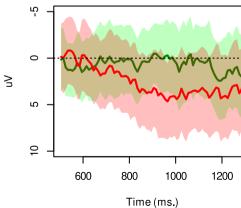
dim(dat) # signal was downsampled to 100 Hz

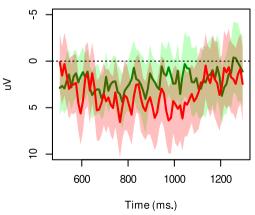
[1] 442160 8

Much individual variation



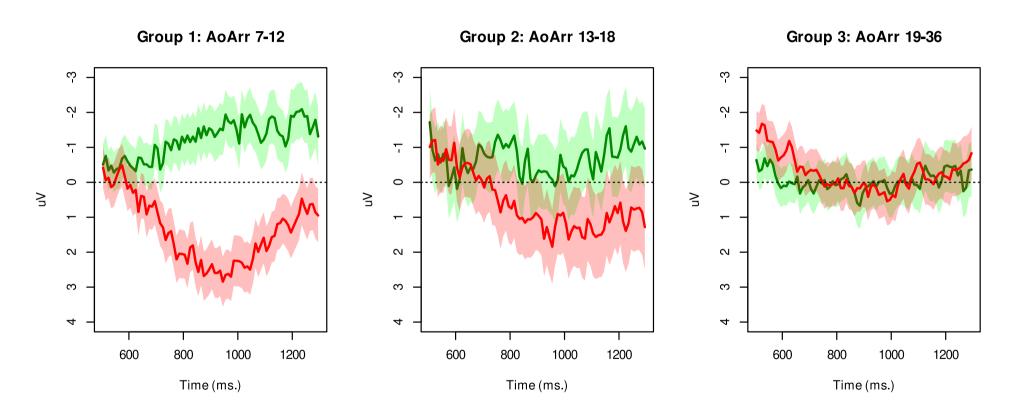






General patterns exist

(note the arbitrary age splits, however)



Go to www.menti.com/047b0d

Why analyze EEG data with GAMS?

Mentimeter

 0	0	0	0	
To detect the patterns over time	To prevent unnecessary averaging	To prevent subjectivity	?	

Press ENTER to show correct

Investigating difference between correct and incorrect

(R version 4.2.2 Patched (2022-11-10 r83330), mgcv version 1.8.41, itsadug version 2.4.1)

#	user	system	elapsed
#	1088	2948	289

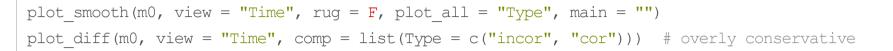
- Time window was set to [500,1300] to limit CPU time
- ACF of model without **rho** was used to determine **rhoval**: 0.91
- Note that the difference between correct and incorrect will be overly conservative

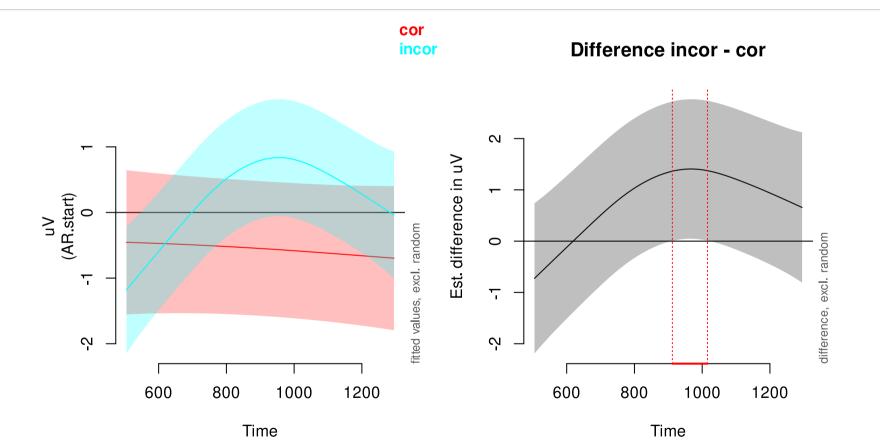
Global difference between correct and incorrect

summary(m0) # slides only show the relevant part of the summary

Parametric coefficients: # Estimate Std. Error t value Pr(>|t|)# (Intercept) -0.561 0.521 -1.08 0.282 # Typeincor 0.803 0.670 1.20 0.231 # # Approximate significance of smooth terms: # edf Ref.df F p-value 1.11 1.20 0.24 0.635 # s(Time):Typecor # s(Time):Typeincor 3.32 4.32 6.77 1.65e-05 *** # s(Time, Subject):Typecor 58.99 603.00 0.90 <2e-16 *** # s(Time, Subject):Typeincor 53.97 602.00 0.48 <2e-16 *** # s(Time, Word):Typecor 68.31 864.00 0.29 <2e-16 *** # s(Time, Word):Typeincor 65.86 863.00 0.26 <2e-16 *** # # Deviance explained = 5.2%

Visualizing difference between correct and incorrect





Modeling the difference directly using a binary curve

```
dat$IsIncorrect <- (dat$Type == "incor") * 1 # create binary predictor: 0 = cor, 1 = incor
m0b <- bam(uV ~ s(Time) + s(Time, by = IsIncorrect) + s(Time, Subject, bs = "fs",
    m = 1) + s(Time, Subject, by = IsIncorrect, bs = "fs", m = 1) + s(Time, Word,
    bs = "fs", m = 1) + s(Time, Word, by = IsIncorrect, bs = "fs", m = 1), data = dat,
    rho = rhoval, AR.start = dat$start.event, discrete = T, nthreads = 8)
```

- s(Time, by=IsIncorrect) is equal to 0 whenever IsIncorrect equals 0
- Correct case: s(Time) + 0 = s(Time)
- Incorrect case: s(Time) + s(Time, by=IsIncorrect)
 - **Difference** between correct and incorrect: **s(Time, by=IsIncorrect)**
 - Binary curve difference is **non-centered** (i.e. includes intercept difference)
- This approach is not overly conservative, as the dependency between the nonlinear patterns for the correct and incorrect case per subject (and word) in the random effects is explicitly included (Sóskuthy, 2021)

Results using a binary curve

summary(mOb, re.test = FALSE) # summary without random effects (quicker to compute)

```
# Parametric coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.573 0.468 -1.22 0.221
#
# Approximate significance of smooth terms:
# edf Ref.df F p-value
# s(Time) 1.64 2.05 0.6 0.535
# s(Time):IsIncorrect 4.08 5.00 3.9 0.002 **
```

 s(Time):IsIncorrect shows the significance of the combined intercept and non-linear difference between correct and incorrect

Modeling the difference using an ordered factor

```
dat$TypeO <- as.ordered(dat$Type) # creating an ordered factor ...
contrasts(dat$TypeO) <- "contr.treatment" # ... with contrast treatment: cor = 0, incor = 1
m0o <- bam(uV ~ s(Time) + s(Time, by = TypeO) + TypeO + s(Time, Subject, bs = "fs",
    m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time, Word, bs = "fs",
    m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat, rho = rhoval,
    AR.start = dat$start.event, discrete = T, nthreads = 8)
```

- s(Time, by=Type0) is equal to 0 whenever Type0 equals cor (reference level)
- Difference between correct and incorrect: s(Time, by=Type0) + Type0
 - s(Time, by=Type0): centered non-linear difference
 - **Type0** (must be included): intercept difference
- The random-effects specification is effectively the same as that of the binary curve model, given that factor smooths involving ordered factors are not centered
- This random reference/difference smooths approach (Sóskuthy, 2021) is appropriate and not overly conservative

Results using an ordered factor

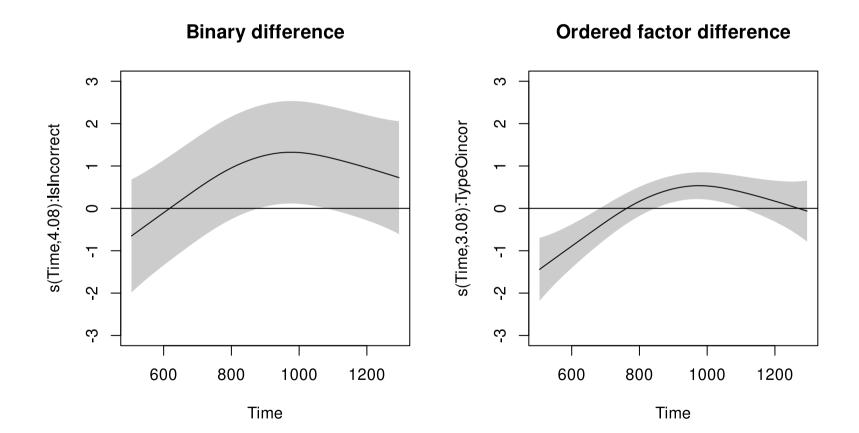
summary(m0o, re.test = FALSE)

1	# Parametric	coefficients	:			
1	#	Estimate St	d. Error	t value	Pr(> t)	
1	# (Intercept)	-0.573	0.468	-1.22	0.221	
4	# TypeOincor	0.789	0.575	1.37	0.170	
4	#					
1	# Approximate	significanc	e of smo	oth terms	5:	
4	#	edf	Ref.df	F p-va	alue	
1	# s(Time)	1.64	2.05	0.60 0	.535	
1	# s(Time):Typ	eOincor 3.08	4.00	4.58 0	.001 **	

- The *p*-value of the parametric coefficient TypeOincor represents the significance of the intercept difference between correct and incorrect
- The *p*-value of the smooth term **s(Time):TypeOincor** represents the significance of the **non-linear difference** between correct and incorrect

Visualization of both difference curves

```
plot(m0b, select = 2, shade = T, rug = F, main = "Binary difference", ylim = c(-3, 3))
plot(m0o, select = 2, shade = T, rug = F, main = "Ordered factor difference", ylim = c(-3, 3))
```



Go to www.menti.com/047b0d

Why use ordered factors instead of binary curves?

0 0 0 0 ? Usefulto Binary Binary predictors predictors separate intercept are more cannot and nonpowerful occur linear diff. multiple times

- →

Press ENTER to show correct

Mentimeter

-

Testing our research question: a non-linear interaction

(te is used to model a non-linear interaction with predictors on a different scale)

```
ml <- bam(uV ~ te(Time, AoArr, by = Type) + Type + s(Time, Subject, bs = "fs", m = 1) + s(Time,
Subject, by = Type0, bs = "fs", m = 1) + s(Time, Word, bs = "fs", m = 1) + s(Time, Word, by = Type0,
bs = "fs", m = 1), data = dat, rho = rhoval, AR.start = dat$start.event, discrete = T, nthreads = 8)
summary(ml, re.test = FALSE)
```

```
# Parametric coefficients:
      Estimate Std. Error t value Pr(>|t|)
#
# (Intercept) -0.457 0.472 -0.97
                                      0.333
# Typeincor 0.476 0.561 0.85 0.396
#
# Approximate significance of smooth terms:
#
                       edf Ref.df
                                   F p-value
# te(Time, AoArr): Typecor 3.09 3.18 1.64
                                          0.177
# te(Time, AoArr):Typeincor 5.88 6.96 4.59 4.14e-05 ***
#
# Deviance explained = 5%
```

Visualization of the two-dimensional difference

Note the default maximum number of edf's per 2D tensor product: 24 (5 2 - 1)

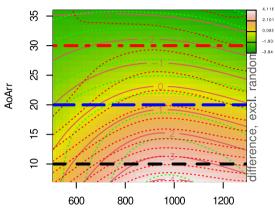
plot_diff2(m1, view = c("Time", "AoArr"), comp = list(Type = c("incor", "cor")))
fadeRug(dat\$Time, dat\$AoArr) # hide points without data



Difference between incor and cor

Time

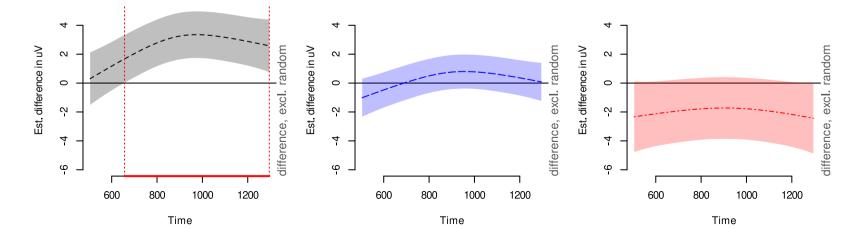
Interpreting the two-dimensional difference



Difference between incor and cor

Time

AoArr = 30

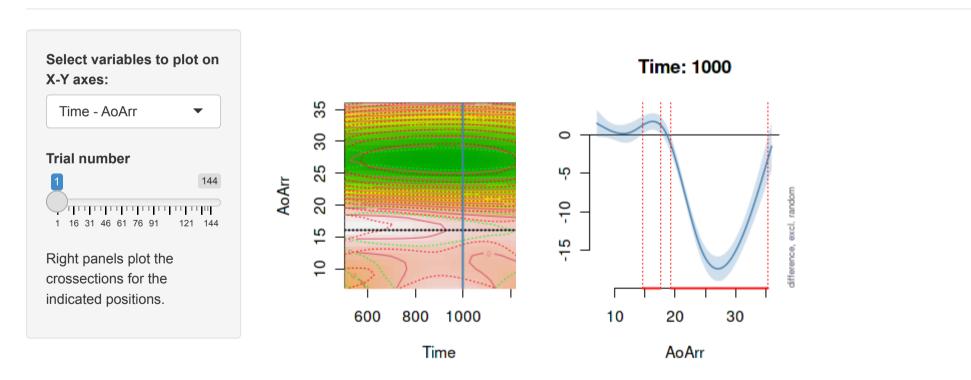


Interpreting two-dimensional interactions

https://eolomea.let.rug.nl/GAM/InterpretingInteractions (login: f112300 and ShinyDem0)

Illustration of nonlinear interactions

Implementation Martijn Wieling & Jacolien van Rij (2015) | Server setup Martijn Wieling (2015)



AoArr: 16

Decomposition: the pure effect of age of arrival

m2 <- bam(uV ~ s(Time, by = Type) + s(AoArr, by = Type) + ti(Time, AoArr, by = Type) + Type +
 s(Time, Subject, bs = "fs", m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time,
 Word, bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat, rho = rhoval,
 AR.start = dat\$start.event, discrete = T, nthreads = 8) # te(x,y) = s(x) + s(y) + ti(x,y)
 summary(m2, re.test = FALSE)</pre>

	#	Parametric coefficients:					
	#	Estimate Std.	. Error	t valu	le Pr	c(> t)	
	#	(Intercept) -0.450	0.472	-0.9	95	0.341	
	#	Typeincor 0.472	0.561	0.8	84	0.400	
	#						
	#	Approximate significance	of smo	oth ter	ms:		
	#		edf Re	ef.df	F	p-value	
	#	s(Time):Typecor	1.02	1.04 0	.04	0.878	
	#	s(Time):Typeincor	3.31	4.30 6	5.56	2.32e-05	***
	#	s(AoArr):Typecor	1.01	1.01 2	2.37	0.124	
	#	s(AoArr):Typeincor	1.00	1.00 1	.85	0.173	
	#	ti(Time, AoArr):Typecor	1.04	1.08 2	2.19	0.128	
	#	ti(Time, AoArr):Typeincor	2.10	2.96 0	.39	0.718	
т							

A simpler model without the non-linear interaction

```
m3 <- bam(uV ~ s(Time, by = Type) + s(AoArr, by = Type) + Type + s(Time, Subject, bs = "fs",
  m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time, Word, bs = "fs", m = 1) +
  s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat, rho = rhoval, AR.start = dat$start.event,
  discrete = T, nthreads = 8)  # ti-terms dropped
  summary(m3, re.test = FALSE)
```

# Parametric coeffic	ients:			
# Estima	te Std.	Error	t value P	r(> t)
# (Intercept) -0.4	48	0.472	-0.95	0.342
# Typeincor 0.4	74	0.561 0		0.399
#				
# Approximate signif	icance	of smoc	th terms:	
#	edf R	ef.df	F p-va	lue
<pre># s(Time):Typecor</pre>	1.01	1.03 0	.35 0.	554
<pre># s(Time):Typeincor</pre>	3.32	4.32 6	.77 1.65e	-05 ***
# s(AoArr):Typecor	1.06	1.07 2	.28 0.1	134
<pre># s(AoArr):Typeincor</pre>	1.01	1.01 1	.80 0.3	179

 While both age of arrival smooths are non-significant, this does not mean that their difference (i.e. the P600) is also non-significant

Model comparison: workaround to use **fREML**

- If we set select = T, all smooths are considered random effects, and model comparison can be done using models fit with fREML (default fitting method)
 - Advantage: **discrete** = **T** usable, and **fREML** fitting is much faster than **ML**
 - Disadvantage: it is an approximation, the results will be less precise

```
m2.alt <- bam(uV ~ s(Time, by = Type) + s(AoArr, by = Type) + ti(Time, AoArr, by = Type) +
Type + s(Time, Subject, bs = "fs", m = 1) + s(Time, Subject, by = Type0, bs = "fs",
m = 1) + s(Time, Word, bs = "fs", m = 1) + s(Time, Word, by = Type0, bs = "fs",
m = 1), data = dat, rho = rhoval, AR.start = dat$start.event, select = T, discrete = T,
nthreads = 8)
m3.alt <- bam(uV ~ s(Time, by = Type) + s(AoArr, by = Type) + Type + s(Time, Subject,</pre>
```

bs = "fs", m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time, Word, bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat, rho = rhoval, AR.start = dat\$start.event, select = T, discrete = T, nthreads = 8)

Model comparison: results

compareML(m2.alt, m3.alt)

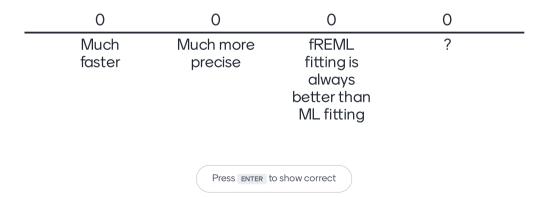
```
# m2.alt: uV ~ s(Time, by = Type) + s(AoArr, by = Type) + ti(Time, AoArr,
#
      by = Type) + Type + s(Time, Subject, bs = "fs", m = 1) +
     s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time,
#
#
     Word, bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs",
     m = 1)
#
# m3.alt: uV ~ s(Time, by = Type) + s(AoArr, by = Type) + Type + s(Time,
#
      Subject, bs = "fs", m = 1) + s(Time, Subject, by = TypeO,
#
     bs = "fs", m = 1) + s(Time, Word, bs = "fs", m = 1) + s(Time, m)
     Word, by = TypeO, bs = "fs", m = 1)
#
#
# Chi-square test of fREML scores
# -----
     Model Score Edf Difference Df p.value Sig.
#
# 1 m3.alt 1492275 18
# 2 m2.alt 1492273 24
                        1.450 6.000 0.821
#
# AIC difference: 4.89, model m3.alt has lower AIC.
```

No support to include ti-terms (simpler model m3.alt is better)

Go to www.menti.com/047b0d

Why try to compare models fit with fREML?

🞽 Mentimeter



30/42

2

← →

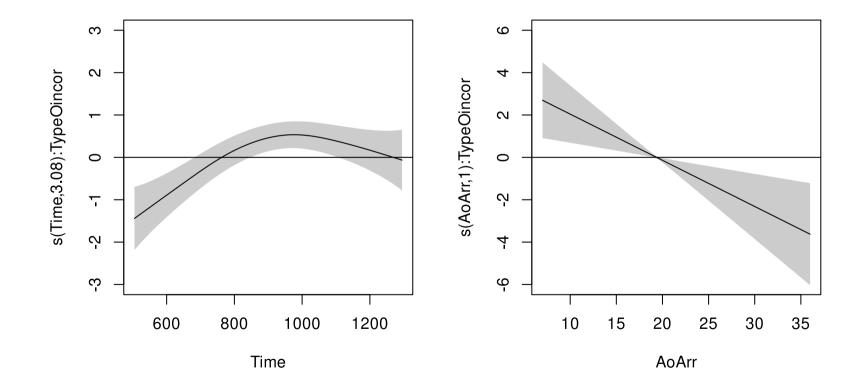
Ordered factor model: significant differences

```
m4 <- bam(uV ~ s(Time) + s(Time, by = TypeO) + s(AoArr) + s(AoArr, by = TypeO) + TypeO + s(Time,
Subject, bs = "fs", m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) + s(Time, Word,
bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat, rho = rhoval,
AR.start = dat$start.event, discrete = T, nthreads = 8)
summary(m4, re.test = FALSE)
```

#	Parametric o	coefficie	ents:				
#		Estimate	e Std	. Error	t val	ue Pr(>	t)
#	(Intercept)	-0.411	L	0.475	-0.	87 0.	.387
#	TypeOincor	0.435	5	0.564	0.	77 0.	.441
#							
#	Approximate	signific	cance	of smoo	oth te	rms:	
#			edf	Ref.df	F	p-value	
#	s(Time)		1.64	2.05	0.60	0.535	
#	s(Time):Type	eOincor	3.08	4.00	4.58	0.001	**
#	s(AoArr)		1.04	1.04	2.33	0.131	
#	s (AoArr) : Typ	peOincor	1.00	1.00	9.10	0.003	**
1							

Difference curves

plot(m4, select = 2, shade = T, rug = F, ylim = c(-3, 3)) plot(m4, select = 4, shade = T, rug = F, ylim = c(-6, 6))

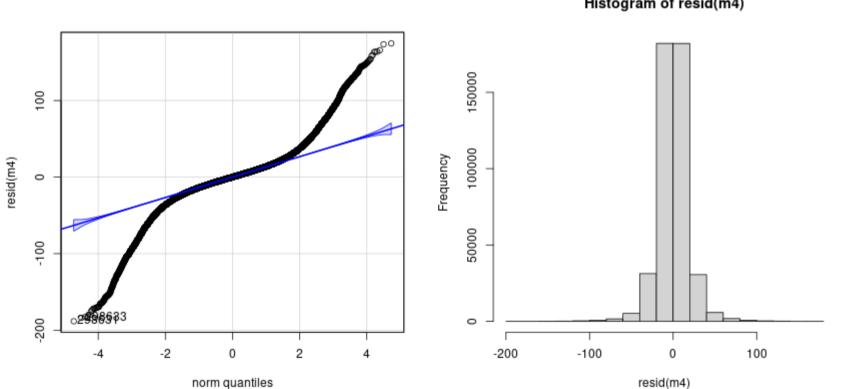


Finally: model criticism

library(car)

qqp(resid(m4)) # quantile-quantile plot function from library car

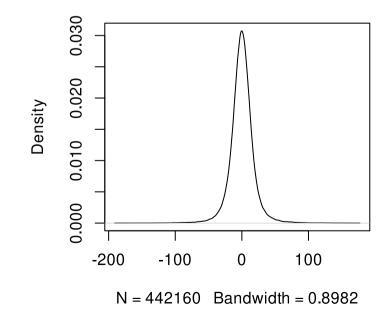
hist(resid(m4))



Histogram of resid(m4)

Problematic residuals!

- $\cdot~$ This type of residual distribution is common for EEG data
- \cdot These **extreme** deviations are **problematic** and may affect *p*-values
- Distribution of residuals looks like scaled-t distribution
 - We can fit this type of model in bam: family="scat"



Fitting a scaled-t model: slow!

system.time(m4.scat <- bam(uV ~ s(Time) + s(Time, by = TypeO) + s(AoArr) + s(AoArr, by = TypeO) +
TypeO + s(Time, Subject, bs = "fs", m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) +
s(Time, Word, bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat,
family = "scat", rho = rhoval, AR.start = dat\$start.event, discrete = T, nthreads = 32))</pre>

user system elapsed
55336 3512 1978

For comparison, duration of the Gaussian model (8 CPU's is fastest)
system.time(m4 <- bam(uV ~ s(Time) + s(Time, by = TypeO) + s(AoArr) + s(AoArr, by = TypeO) +
TypeO + s(Time, Subject, bs = "fs", m = 1) + s(Time, Subject, by = TypeO, bs = "fs", m = 1) +
s(Time, Word, bs = "fs", m = 1) + s(Time, Word, by = TypeO, bs = "fs", m = 1), data = dat,
rho = rhoval, AR.start = dat\$start.event, discrete = T, nthreads = 8))</pre>

user system elapsed # 1347 2395 152

Using the scaled-t distribution: $p\mbox{-values}$ change

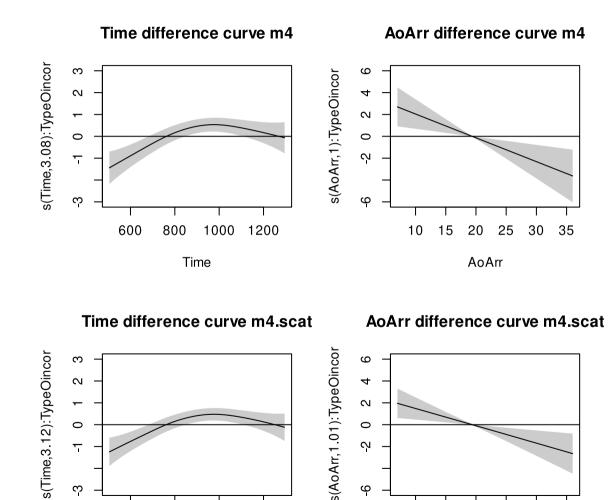
summary(m4, re.test = FALSE)\$s.table # significance of smooths

#	edf	Ref.df	F	p-value
# s(Time)	1.64	2.05	0.595	0.53482
<pre># s(Time):TypeOincor</pre>	3.08	4.00	4.581	0.00107
# s(AoArr)	1.04	1.04	2.333	0.13057
<pre># s(AoArr):TypeOincor</pre>	1.00	1.00	9.099	0.00253

summary(m4.scat, re.test = FALSE)\$s.table # significance of smooths

#		edf	Ref.df	F	p-value	
# s(Ti	.me)	2.35	3.03	1.259	0.28801	
# s(Ti	me):TypeOincor	3.12	4.04	4.364	0.00153	
# s(Ac	Arr)	1.10	1.11	0.502	0.54404	
# s(Ac	Arr):TypeOincor	1.01	1.02	8.432	0.00364	

Using the scaled-t distribution: similar patterns



Ņ

မှ

10

15

800

600

1200

1000

Τ

ကု

20

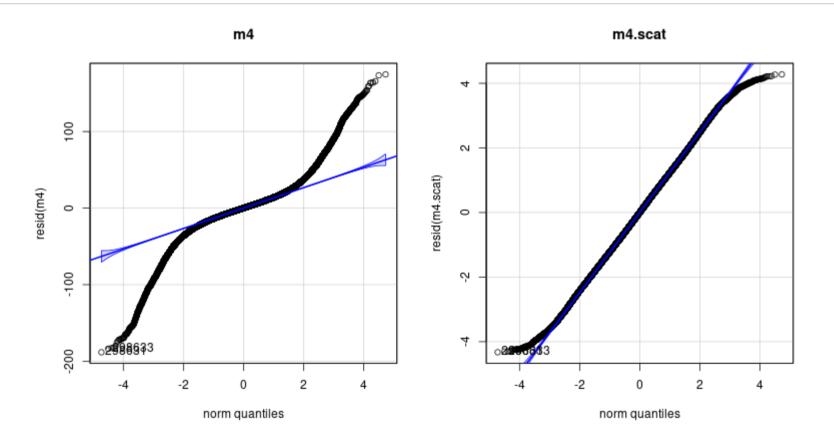
25

30

35

Model criticism: much improved!

par(mfrow = c(1, 2))
qqp(resid(m4), main = "m4")
qqp(resid(m4.scat), main = "m4.scat")



Discussion and conclusion

- GAMs are very useful to analyze EEG and other time-series data
 - GAMs can detect non-linear patterns, while taking into account individual variation and autocorrelation
 - Using the *random reference/difference smooths approach* results in appropriate (not overly conservative) difference smooths (Sóskuthy, 2021)
 - The by-approach (e.g., model m0) is better for modeling individual factor levels
 - Associated paper: Meulman et al. (2015) (paper package: data and code)
- Still work to do:
 - Assessing by-word variability in the (linear) effect of age of arrival
 - Testing the significance of other possibly important variables (e.g., proficiency)
 - But stay close to your hypothesis: much unexplained variation in EEG data!

Recap

- We have applied GAMs to EEG data and learned how to:
 - Model difference smooths directly using binary predictors and ordered factors
 - Use te(Time, AoArr) to model a non-linear interaction
 - Decompose te(Time, AoArr) using ti() and two s()'s
 - Use a scaled-*t* distribution to improve residuals
- While we have analyzed a single region of interest, GAMs allow for spatial distribution analyses
 - E.g., via te(x, y, Time, d = c(2,1))
- Associated lab session:
 - https://www.let.rug.nl/wieling/Statistics/GAM-EEG/lab

Go to www.menti.com/047b0d

Please provide your opinion about this lecture in at Mentimeter most 3 words/phrases!

Questions?

Thank you for your attention!

http://www.martijnwieling.nl m.b.wieling@rug.nl

