R
R
: logit(p)
(from library car
)R
: plogis(x)
) Subject Item TargetDefinite TargetNeuter TargetColor TargetPlace CompColor
1 S300 boom 1 0 green 3 brown
2 S300 bloem 1 0 red 4 green
3 S300 anker 1 1 yellow 3 yellow
4 S300 auto 1 0 green 3 brown
5 S300 boek 1 1 blue 4 blue
6 S300 varken 1 1 brown 1 green
CompPlace TrialID Age IsMale Edulevel SameColor SameGender TargetFocus CompFocus
1 2 1 52 0 1 0 1 43 41
2 2 2 52 0 1 0 0 100 0
3 2 3 52 0 1 1 1 73 27
4 2 4 52 0 1 0 0 100 0
5 3 5 52 0 1 1 0 12 21
6 3 6 52 0 1 0 0 0 51
lme4
version 1.1.37)Random effects:
Groups Name Std.Dev.
Item (Intercept) 0.326
Subject (Intercept) 0.588
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.848 0.121 7.02 2.28e-12 ***
model0 <- glmer( cbind(TargetFocus, CompFocus) ~ (1|Subject), data=eye, family='binomial')
anova(model0,model1) # random intercept for item is necessary
Data: eye
Models:
model0: cbind(TargetFocus, CompFocus) ~ (1 | Subject)
model1: cbind(TargetFocus, CompFocus) ~ (1 | Subject) + (1 | Item)
npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
model0 2 128304 128315 -64150 128300
model1 3 125387 125404 -62690 125381 2919 1 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glmer
is ML
(i.e. refit
in anova
unnecessary) Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.68 0.1209 13.9 <2e-16 ***
SameColor -1.48 0.0118 -125.5 <2e-16 ***
SameColor
as this effect will be the most dominantSameColor
varies per subject
model3 <- glmer( cbind(TargetFocus, CompFocus) ~ SameColor + (1+SameColor|Subject) + (1|Item), data=eye,
family='binomial') # always: (1 + factorial predictor | ranef)
anova(model2,model3)$P[2] # random slope necessary (p-value is so low that R shows 0)
[1] 0
Random effects:
Groups Name Std.Dev. Corr
Item (Intercept) 0.359
Subject (Intercept) 1.251
SameColor 0.949 -0.95
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.89 0.245 7.69 1.45e-14 ***
SameColor -1.71 0.184 -9.29 <2e-16 ***
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8536 0.2463 7.53 5.2e-14 ***
SameColor -1.7124 0.1847 -9.27 <2e-16 ***
SameGender 0.0742 0.0115 6.47 9.97e-11 ***
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.9398 0.2509 7.73 1.07e-14 ***
SameColor -1.7125 0.1845 -9.28 <2e-16 ***
SameGender 0.0742 0.0115 6.47 9.92e-11 ***
TargetNeuter -0.1723 0.1015 -1.70 0.090
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.067 0.2515 8.22 2.01e-16 ***
SameColor -1.716 0.1848 -9.29 <2e-16 ***
SameGender -0.174 0.0164 -10.63 <2e-16 ***
TargetNeuter -0.416 0.1026 -4.05 5.13e-05 ***
SameGender:TargetNeuter 0.487 0.0230 21.24 <2e-16 ***
eye$TargetColor <- relevel( eye$TargetColor, "brown" ) # set specific reference level
model7 <- glmer( cbind(TargetFocus, CompFocus) ~ SameColor + SameGender * TargetNeuter +
TargetColor + (1+SameColor|Subject) + (1|Item), data=eye, family='binomial')
summary(model7)$coef # inclusion warranted (anova: p = 0.005; not shown)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.707 0.2669 6.40 1.58e-10 ***
SameColor -1.716 0.1847 -9.29 <2e-16 ***
SameGender -0.174 0.0164 -10.63 <2e-16 ***
TargetNeuter -0.415 0.0880 -4.72 2.33e-06 ***
TargetColorblue 0.275 0.1433 1.92 0.055
TargetColorgreen 0.494 0.1434 3.44 0.000574 ***
TargetColorred 0.456 0.1433 3.18 0.001 **
TargetColoryellow 0.502 0.1433 3.50 0.000464 ***
SameGender:TargetNeuter 0.488 0.0230 21.24 <2e-16 ***
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: glmer(formula = cbind(TargetFocus, CompFocus) ~ SameColor + SameGender *
TargetNeuter + TargetColor + (1 + SameColor | Subject) +
(1 | Item), data = eye, family = "binomial")
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
blue - brown == 0 0.27510 0.14329 1.92 0.3063
green - brown == 0 0.49377 0.14339 3.44 0.0052 **
red - brown == 0 0.45611 0.14328 3.18 0.0126 *
yellow - brown == 0 0.50162 0.14329 3.50 0.0041 **
green - blue == 0 0.21867 0.13516 1.62 0.4855
red - blue == 0 0.18101 0.13506 1.34 0.6657
yellow - blue == 0 0.22653 0.13506 1.68 0.4478
red - green == 0 -0.03766 0.13516 -0.28 0.9987
yellow - green == 0 0.00786 0.13517 0.06 1.0000
yellow - red == 0 0.04551 0.13506 0.34 0.9972
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.139 0.2502 8.55 <2e-16 ***
SameColor -1.716 0.1849 -9.29 <2e-16 ***
SameGender -0.174 0.0164 -10.63 <2e-16 ***
TargetNeuter -0.415 0.0913 -4.55 5.36e-06 ***
TargetBrown -0.432 0.1215 -3.55 0.000382 ***
SameGender:TargetNeuter 0.488 0.0230 21.24 <2e-16 ***
# chance to focus on target when there is a color competitor and
# a gender competitor, while the target is common and not brown
(logit <- fixef(model8)["(Intercept)"] + 1 * fixef(model8)["SameColor"] +
1 * fixef(model8)["SameGender"] + 0 * fixef(model8)["TargetNeuter"] +
0 * fixef(model8)["TargetBrown"] +
1 * 0 * fixef(model8)["SameGender:TargetNeuter"])
(Intercept)
0.248
(Intercept)
0.562
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.582 0.3325 7.77 8.15e-15 ***
SameColor -1.803 0.2043 -8.82 <2e-16 ***
SameGender -0.269 0.0174 -15.39 <2e-16 ***
TargetNeuter -0.514 0.1181 -4.35 1.37e-05 ***
TargetBrown -0.602 0.1576 -3.82 0.000133 ***
SameGender:TargetNeuter 0.701 0.0244 28.78 <2e-16 ***
R
-functions are provided to generate all plotsThank you for your attention!
https://www.martijnwieling.nl
m.b.wieling@rug.nl