

Logistic mixed-effects regression

Martijn Wieling University of Groningen

This lecture

- \cdot Introduction
 - Gender processing in Dutch
 - Eye-tracking to reveal gender processing
- Design
- · Analysis: logistic mixed-effects regression
- \cdot Conclusion

Gender processing in Dutch

- Study's goal: assess if Dutch people use grammatical gender to anticipate upcoming words
- This study was conducted together with Hanneke Loerts and is published in the *Journal of Psycholinguistic Research* (Loerts, Wieling and Schmid, 2012)
- What is grammatical gender?
 - Gender is a property of a noun
 - Nouns are divided into classes: masculine, feminine, neuter, ...
 - E.g., *hond* ('dog') = common (masculine/feminine), *paard* ('horse') = neuter
- The gender of a noun can be determined from the forms of elements syntactically related to it

Gender in Dutch

Gender	Definite article	Adjective in definite NPs	Adjective in Indefinite NPs
Common	De hond	De mooie hond	Een <mark>mooie</mark> hond
English equivalent	The _{com} dog _{com}	The _{com} beautiful dog _{com}	A beautiful _{com} dog _{com}
Neuter	Het huis	Het mooie huis	Een <mark>mooi</mark> huis
English equivalent	The _{neu} house _{neu}	The _{neu} beautiful house _{neu}	A beautiful _{neu} house _{neu}

- Gender in Dutch: 70% common, 30% neuter
- When a noun is diminutive it is always neuter (the Dutch often use diminutives!)
- Gender is unpredictable from the root noun and hard to learn

Why use eye tracking?

- Eye tracking reveals incremental processing of the listener during time course of speech signal
- As people tend to look at what they hear (<u>Cooper, 1974</u>), lexical competition can be tested

Testing lexical competition using eye tracking

 Cohort Model (Marslen-Wilson & Welsh, 1978): competition between words is based on word-initial activation

 This can be tested using the visual world paradigm: following eye movements while participants receive auditory input to click on one of several objects on a screen

Support for the Cohort Model

- Subjects hear: "Pick up the candy" (Tanenhaus et al., 1995)
- Fixations towards target (Candy) and competitor (Candle): support for the Cohort Model

Lexical competition based on syntactic gender

- Other models of lexical processing state that lexical competition occurs based on all acoustic input (e.g., TRACE, Shortlist, NAM)
- Does syntactic gender information restrict the possible set of lexical candidates?
 - If you hear *de*, do you focus more on *de hond* (dog) than on *het paard* (horse)?
 - Previous studies (e.g., <u>Dahan et al., 2000</u> for French) have indicated gender information restricts the possible set of lexical candidates
- \cdot We will investigate if this also holds for Dutch (other gender system) via the VWP
- · We analyze the data using (generalized) linear mixed-effects regression in ${f R}$

Experimental design

- 28 Dutch participants heard sentences like:
- *Klik op de rode appel* ('click on the red apple')
- *Klik op het plaatje met een blauw boek* ('click on the image of a blue book')
- They were shown 4 nouns varying in color and gender
- Eye movements were tracked with a Tobii eye-tracker (E-Prime extensions)

Experimental design: conditions

Target	Competitor	Gender Competitor	Colour Competitor
	Het _{neu} groene bureau _{neu} The _{neu} green desk _{neu}	Different	Different
De _{com} rode appel _{com} The _{com} red apple _{com}	De _{com} gele zon _{com} The _{com} yellow sun _{com}	Same	Different
	Het _{neu} rode hart _{neu} The _{neu} red heart _{neu}	Different	Same
	De _{com} rode taart _{com} The _{com} red cake _{com}	Same	Same

- Subjects were shown 96 different screens
- 48 screens for indefinite sentences ("*Klik op het plaatje met een rode appel.*")
- 48 screens for definite sentences ("Klik op de rode appel.")

Visualizing fixation proportions: different color

Visualizing fixation proportions: same color

Condition: Colour same - Gender different

Which dependent variable? (1)

- Difficulty 1: choosing the dependent variable
 - Fixation difference between target and competitor
 - Fixation proportion on target: requires transformation to empirical logit, to ensure the dependent variable is unbounded: $log(\frac{(y+0.5)}{(N-y+0.5)})$
 - Logistic regression comparing fixations on target versus competitor
- Difficulty 2: selecting a time span to average over
 - Note that about 200 ms. is needed to plan and launch an eye movement
 - It is possible (and better) to take every individual sampling point into account, but we will opt for the simpler approach here (in contrast to the GAM approach)

Go to www.menti.com/99ec22

Which dependent variable would you choose?

0 0 0 0 Fixation Comparing ? Fixation difference proportion focuson X between on Target Target vs. Target and (emp.logit) Comp. Competitor (logistic) X X \checkmark

 $\leftarrow \rightarrow$

🞽 Mentimeter

Which dependent variable? (2)

- Here we use logistic mixed-effects regression comparing fixations on the target versus the competitor
- Averaged over the time span starting 200 ms. after the onset of the determiner and ending 200 ms. after the onset of the noun (about 800 ms.)
- This ensures that gender information has been heard and processed, both for the definite and indefinite sentences

Generalized linear mixed-effects regression

- A generalized linear (mixed-effects) regression model (GLM) is a generalization of linear (mixed-effects) regression model
 - Response variables may have an error distribution different than the norm. dist.
 - Linear model is related to response variable via link function
 - Variance of measurements may depend on the predicted value
- Examples of GLMs are Poisson regression, **logistic regression**, etc.

Logistic (mixed-effects) regression

- Dependent variable is binary (1: success, 0: failure): modeled as probabilities
- Transform to continuous variable via log odds link function: $\log(\frac{p}{1-p}) = \operatorname{logit}(p)$
 - In R: logit(p) (from library car)
- Interpret coefficients w.r.t. success as logits (in R: plogis(x))

Х

Logistic mixed-effects regression: assumptions

- · Independent observations within each level of the random-effect factor
- Relation between logit-transformed DV and independent variables linear
- No strong multicollinearity
- No highly influential outliers (i.e. assessed using model criticism)
- Important: No normality or homoscedasticity assumptions about the residuals

Some remarks about data preparation

- Check pairwise correlations of your predictor variables
 - If high: exclude variable / combine variables (residualization is not OK)
 - See also: Chapter 6.2.2 of Baayen (2008)
- Check distribution of numerical predictors
 - If skewed, it may help to transform them
- Center your numerical predictors when doing mixed-effects regression

Our study: independent variables (1)

- Variable of interest:
 - Competitor gender vs. target gender
- Variables which are/could be important:
 - Competitor vs. target color
 - Gender of target (common or neuter)
 - Definiteness of target

Our study: independent variables (2)

- Participant-related variables:
 - Sex (male/female), age, education level
 - Trial number
- Design control variables:
 - Competitor position vs. target position (up-down or down-up)
 - Color of target
 - ... (anything else you are not interested in, but potentially problematic)

Go to www.menti.com/99ec22

Does your design need to be balanced for mixed-effects regression?

 \leftrightarrow

Mentimeter

head (eye)

#	ŧ	Subject	Item	Target	Definite	TargetNeuter	Target	tColor	Targe	etPlace	Comp	pColor	
#	1	S300	boom		1	0		green		3		brown	
#	2	S300	bloem		1	0		red		4		green	
‡	₹ 3	S300	anker		1	1	-	yellow		3	7	yellow	
‡	4	S300	auto		1	0		green		3		brown	
‡	5	S300	boek		1	1		blue		4		blue	
#	6	S300	varken		1	1		brown		1		green	
‡	ł	CompPlac	e Trial	ID Age	e IsMale H	Edulevel Same	Color S	SameGer	nder 1	FargetFo	ocus	CompFo	cus
#	1		2	1 52	2 0	1	0		1		43		41
ŧ	2		2	2 52	2 0	1	0		0		100		0
#	± 3		2	3 52	2 0	1	1		1		73		27
1	4		2	4 52	2 0	1	0		0		100		0
‡	5		3	5 52	2 0	1	1		0		12		21
‡	6		3	6 52	2 0	1	0		0		0		51

Our first generalized mixed-effects regression model

(R version 4.2.2 Patched (2022-11-10 r83330), **lme4** version 1.1.31)

```
library(lme4)
model1 <- glmer(cbind(TargetFocus, CompFocus) ~ (1 | Subject) + (1 | Item), data = eye,
    family = "binomial")  # intercept-only model
summary(model1)  # slides only show relevant part of the summary</pre>
```

```
# Random effects:
# Groups Name Std.Dev.
# Item (Intercept) 0.326
# Subject (Intercept) 0.588
#
# Fixed effects:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 0.848 0.121 7.02 2.26e-12 ***
```

Interpreting logit coefficients I

fixef(model1) # show fixed effects inv.logit (Intercept) 1.0 # 0.848 # 0.8 plogis(fixef(model1)["(Intercept)"]) 0.6 plogis(x) # (Intercept) 0.4 0.7 #

• On average 70% chance to focus on target

By-item random intercepts

TrialID

By-subject random intercepts

TrialID

Is a by-item analysis necessary?

model0 <- glmer(cbind(TargetFocus, CompFocus) ~ (1 | Subject), data = eye, family = "binomial")
anova(model0, model1) # random intercept for item is necessary</pre>

Data: eye	
Models:	
model0: cbind(TargetFocus, CompFocus) ~ (1 Subject)	
model1: cbind(TargetFocus, CompFocus) ~ (1 Subject) + (1	. Item)
npar AIC BIC logLik deviance Chisq Df Pr(>Chi	_sq)
model0 2 128304 128315 -64150 128300	
model1 3 125387 125404 -62690 125381 2919 1 <2e	≥-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '	' 1

• Only fitting method available for **glmer** is **ML** (i.e. **refit** in **anova** unnecessary)

Adding a fixed-effect predictor

#	Esti	mate Std	. Error z	z value	Pr(> z)	
# (Inter	cept)	1.68	0.1209	13.9	<2e-16	***
# SameCo	lor -	1.48	0.0118	-125.5	<2e-16	***

- We start with **SameColor** as this effect will be the most dominant
- Significant negative estimate: less likely to focus on target
- We need to test if the effect of **SameColor** varies per subject
 - If there is much between-subject variation, this will influence signficance

Testing for a random slope

model3 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + (1 + SameColor | Subject) +
 (1 | Item), data = eye, family = "binomial") # always: (1 + factorial predictor | ranef)
anova(model2, model3)\$P[2] # random slope necessary (p-value is so low that R shows 0)</pre>

[1] 0

summary(model3)

# Random ef	fects:				
# Groups	Name	Std.Dev.	Corr		
# Item	(Intercept)	0.359			
# Subject	(Intercept)	1.251			
#	SameColor	0.949	-0.95		
#					
# Fixed eff	ects:				
#	Estimate	Std. Erro	or z value	Pr(> z)	
# (Intercep	ot) 1.89	0.24	6 7.68	1.58e-14	***
# SameColor	-1.71	0.18	-9.28	<2e-16	***

Investigating the gender effect (hypothesis test)

model4 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender + (1 + SameColor |
 Subject) + (1 | Item), data = eye, family = "binomial")
summary(model4)\$coef</pre>

#	Estimate	Std. Error z	z value	Pr(> z)
# (Intercept)	1.8536	0.2460	7.54	4.87e-14 ***
# SameColor	-1.7124	0.1845	-9.28	<2e-16 ***
# SameGender	0.0742	0.0115	6.47	9.97e-11 ***

- It seems the gender is effect is **opposite** to our expectations...
- Perhaps there is an effect of common vs. neuter gender?

Visualizing fixation proportions: common (OK)

Visualizing fixation proportions: neuter (not OK)

Time (ms)

Adding the contrast between common and neuter

(from now on: exploratory analysis)

```
model5 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender + TargetNeuter +
    (1 + SameColor | Subject) + (1 | Item), data = eye, family = "binomial")
summary(model5)$coef # contrast is not significant</pre>
```

#	Estimate	Std. Error	z value	Pr(> z)	
# (Intercept)	1.9398	0.2513	7.72	1.18e-14	***
# SameColor	-1.7125	0.1848	-9.27	<2e-16	***
# SameGender	0.0742	0.0115	6.47	9.92e-11	***
# TargetNeuter	-0.1723	0.1015	-1.70	0.090	

anova(model4, model5)\$P[2] # noun type contrast by itself is not needed in a better model

[1] 0.0944

Testing the interaction

model6 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender * TargetNeuter +
 (1 + SameColor | Subject) + (1 | Item), data = eye, family = "binomial")
summary(model6)\$coef</pre>

#	Estimate	Std. Error	z value	Pr(> z)
# (Intercept)	2.067	0.2515	8.22	2.04e-16 ***
# SameColor	-1.716	0.1848	-9.29	<2e-16 ***
# SameGender	-0.174	0.0164	-10.63	<2e-16 ***
# TargetNeuter	-0.416	0.1026	-4.05	5.14e-05 ***
# SameGender:TargetNeuter	0.487	0.0230	21.24	<2e-16 ***

```
anova (model4, model6) $P[2]
```

```
# [1] 1.74e-99
```

• There is clear support for an interaction between noun type and gender condition

Visualizing the interaction: interpretation

- Common noun pattern as expected, but neuter noun pattern inverted
 - Unfortunately, we have no sensible explanation for this finding

Example of adding a multilevel factor to the model

eye\$TargetColor <- relevel(eye\$TargetColor, "brown") # set specific reference level
model7 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender * TargetNeuter +
 TargetColor + (1 + SameColor | Subject) + (1 | Item), data = eye, family = "binomial")
summary(model7)\$coef # inclusion warranted (anova: p = 0.005; not shown)</pre>

(Intercept)2.05280.24858.261.43e-16***# SameColor-1.71650.1846-9.30<2e-16***
SameColor -1.7165 0.1846 -9.30 <2e-16 ***
SameGender -0.1743 0.0164 -10.63 <2e-16 ***
TargetNeuter -0.4155 0.0880 -4.72 2.32e-06 ***
TargetColor1 -0.3453 0.0936 -3.69 0.000225 ***
TargetColor2 -0.0702 0.0860 -0.82 0.414
TargetColor3 0.1484 0.0861 1.72 0.085
TargetColor4 0.1108 0.0860 1.29 0.197
SameGender:TargetNeuter 0.4877 0.0230 21.24 <2e-16 ***

Comparing different factor levels

summary(glht(model7,linfct=mcp(TargetColor = "Tukey"))) # from library(multcomp)

```
#
    Simultaneous Tests for General Linear Hypotheses
#
#
# Multiple Comparisons of Means: Tukey Contrasts
#
#
# Fit: glmer(formula = cbind(TargetFocus, CompFocus) ~ SameColor + SameGender *
#
     TargetNeuter + TargetColor + (1 + SameColor | Subject) +
#
     (1 | Item), data = eye, family = "binomial")
#
# Linear Hypotheses:
#
                    Estimate Std. Error z value Pr(>|z|)
\# blue - brown == 0 0.27509
                               0.14328 1.92 0.3063
# green - brown == 0 0.49376
                               0.14337 3.44 0.0052 **
# red - brown == 0
                               0.14327 3.18 0.0126 *
                     0.45611
                                          3.50 0.0042 **
# yellow - brown == 0 0.50160
                               0.14328
# green - blue == 0 0.21867
                               0.13516
                                         1.62 0.4856
\# red - blue == 0
                    0.18102
                               0.13506
                                         1.34 0.6657
# yellow - blue == 0 0.22652
                               0.13506
                                         1.68 0.4478
# red - green == 0
                    -0.03764
                                         -0.28 0.9987
                               0.13516
# yellow - green == 0 0.00785
                               0.13516
                                          0.06 1.0000
# yellow - red == 0 0.04549
                               0.13506
                                          0.34 0.9972
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# (Adjusted p values reported -- single-step method)
```

Simplifying the factor in a contrast

```
eye$TargetBrown <- (eye$TargetColor == "brown") * 1
model8 <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender * TargetNeuter +
    TargetBrown + (1 + SameColor | Subject) + (1 | Item), data = eye, family = "binomial")
summary(model8)$coef</pre>
```

#		Estimate	Std. Error	z value	Pr(> z)
#	(Intercept)	2.139	0.2502	8.55	<2e-16 ***
#	SameColor	-1.716	0.1849	-9.29	<2e-16 ***
#	SameGender	-0.174	0.0164	-10.63	<2e-16 ***
#	TargetNeuter	-0.415	0.0913	-4.55	5.36e-06 ***
#	TargetBrown	-0.432	0.1215	-3.55	0.000382 ***
#	SameGender:TargetNeuter	0.488	0.0230	21.24	<2e-16 ***

anova(model8, model7)\$P[2] # N.B. model7 is more complex: model with TargetBrown preferred

[1] 0.311

Interpreting logit coefficients II

chance to focus on target
when there is a color
competitor and a gender
competitor, while the
target is common and not
brown
(logit <- fixef(model8)["(Intercept)"] +
 1 * fixef(model8)["SameColor"] +
 1 * fixef(model8)["TargetNeuter"] +
 0 * fixef(model8)["TargetBrown"] +
 1 * 0 * fixef(model8)["SameGender:TargetNeuter"])</pre>

(Intercept)

0.248

plogis(logit) # intercept-only model was 0.7

(Intercept)

0.562

Distribution of residuals

qqnorm(resid(model8))
qqline(resid(model8))

• Not normal, but also not required for logistic regression

Model criticism: effect of excluding outliers

eye2 <- eye[abs(scale(resid(model8))) < 2,] # 97% of original data included model8b <- glmer(cbind(TargetFocus, CompFocus) ~ SameColor + SameGender * TargetNeuter + TargetBrown + (1 + SameColor | Subject) + (1 | Item), data = eye2, family = "binomial") summary(model8b)\$coef

#		Estimate	Std. Error	z value	Pr(> z)	
#	(Intercept)	2.582	0.3326	7.76	8.21e-15	***
#	SameColor	-1.803	0.2043	-8.82	<2e-16	***
#	SameGender	-0.269	0.0174	-15.39	<2e-16	***
#	TargetNeuter	-0.514	0.1181	-4.35	1.37e-05	***
#	TargetBrown	-0.602	0.1576	-3.82	0.000134	***
#	SameGender:TargetNeuter	0.701	0.0244	28.78	<2e-16	***

• Results remain largely the same: no undue influence of outliers!

Go to www.menti.com/99ec22

Why would a better analysis involve the complete time course?

 \leftrightarrow \rightarrow

🞽 Mentimeter

Many more things to do...

- We still need to:
 - See if the significant fixed effects remain significant when adding the (necessary) random slopes
 - See (in this exploratory analysis phase) if there are other variables we should include (e.g., education level)
 - See if there are other interactions which should be included
 - Apply model criticism *after* these steps
- In the associated lab session, these issues are discussed:
 - A subset of the data is used (only same color)
 - Simple **R**-functions are provided to generate all plots

Recap

- We have learned how to create logistic mixed-effects regression models
- We have learned how to interpret the results (in terms of logits)
- However, we analyzed this data in a **non-optimal** way:
 - It would be better to predict target focus for every timepoint (GAMs!)
- Associated lab session:
 - https://www.let.rug.nl/wieling/Statistics/Logistic-Mixed-Effects/lab

Go to www.menti.com/99ec22

Please provide your opinion about this lecture in Mentimeter at most 3 words/phrases!

47/48

Questions?

Thank you for your attention!

http://www.martijnwieling.nl m.b.wieling@rug.nl

