Multiple regression and Cronbach’s alpha
Call:
lm(formula = NL ~ LR, data = saa)
Residuals:
    Min      1Q  Median      3Q     Max 
-2.9902 -0.6875  0.0454  0.6867  2.2630 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.15505    0.06455   -2.40    0.017 *  
LR           0.02041    0.00466    4.38  1.6e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.973 on 323 degrees of freedom
Multiple R-squared:  0.0561,    Adjusted R-squared:  0.0531 
F-statistic: 19.2 on 1 and 323 DF,  p-value: 1.61e-05
Call:
lm(formula = NL ~ LR + AgeGroup, data = saa)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.0168 -0.6580  0.0846  0.6557  2.2357 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.12920    0.06498   -1.99    0.048 *  
LR           0.02770    0.00554    5.00  9.3e-07 ***
AgeGroupOld -0.37194    0.15523   -2.40    0.017 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.966 on 322 degrees of freedom
Multiple R-squared:  0.0726,    Adjusted R-squared:  0.0668 
F-statistic: 12.6 on 2 and 322 DF,  p-value: 5.38e-06
Analysis of Variance Table
Model 1: NL ~ LR
Model 2: NL ~ LR + AgeGroup
  Res.Df RSS Df Sum of Sq    F Pr(>F)  
1    323 306                           
2    322 300  1      5.36 5.74  0.017 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
saa$LR.z <- (saa$LR - mean(saa$LR)) / sd(saa$LR)
summary(m2 <- lm(NL ~ LR.z + AgeGroup, data=saa)) # LR has larger effect (0.32 per SD; AG: 0.37 in total)
Call:
lm(formula = NL ~ LR.z + AgeGroup, data = saa)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.0168 -0.6580  0.0846  0.6557  2.2357 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.0813     0.0634    1.28    0.201    
LR.z          0.3214     0.0642    5.00  9.3e-07 ***
AgeGroupOld  -0.3719     0.1552   -2.40    0.017 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.966 on 322 degrees of freedom
Multiple R-squared:  0.0726,    Adjusted R-squared:  0.0668 
F-statistic: 12.6 on 2 and 322 DF,  p-value: 5.38e-06
            Estimate Std. Error t value Pr(>|t|)
(Intercept)    0.081      0.063     1.3  2.0e-01
LR.z           0.321      0.064     5.0  9.3e-07
AgeGroupOld   -0.372      0.155    -2.4  1.7e-02
AgeGroup == 'Young') with an avg. length of residence (LR.z == 0) have a predicted nativelikeness of 0.081            Estimate Std. Error t value Pr(>|t|)
(Intercept)    0.081      0.063     1.3  2.0e-01
LR.z           0.321      0.064     5.0  9.3e-07
AgeGroupOld   -0.372      0.155    -2.4  1.7e-02
NL = 0.08 + 0.32 * LR.z + -0.37 * AgeGroupOldAgeGroupOld equals 1 for the Old group and 0 for the Young group            Estimate Std. Error t value Pr(>|t|)
(Intercept)    0.081      0.063     1.3  2.0e-01
LR.z           0.321      0.064     5.0  9.3e-07
AgeGroupOld   -0.372      0.155    -2.4  1.7e-02
NL = 0.08 + 0.32 * LR.z + -0.37 * AgeGroupOldLR.z of 0 and AgeGroup Young: 0.08 + 0.32 \(\times\) 0 + -0.37 \(\times\) 0 = 0.08 (= Intercept)LR.z of 0.5 and AgeGroup Old: 0.08 + 0.32 \(\times\) 0.5 + -0.37 \(\times\) 1 = -0.13
Call:
lm(formula = NL ~ LR.z * AgeGroup, data = saa)
Residuals:
    Min      1Q  Median      3Q     Max 
-2.9464 -0.6658  0.0731  0.6751  2.3044 
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.1386     0.0684    2.03    0.044 *  
LR.z               0.5190     0.1114    4.66  4.7e-06 ***
AgeGroupOld       -0.3289     0.1556   -2.11    0.035 *  
LR.z:AgeGroupOld  -0.2943     0.1360   -2.16    0.031 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.961 on 321 degrees of freedom
Multiple R-squared:  0.0859,    Adjusted R-squared:  0.0774 
F-statistic: 10.1 on 3 and 321 DF,  p-value: 2.37e-06
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)          0.14      0.068     2.0  4.4e-02
LR.z                 0.52      0.111     4.7  4.7e-06
AgeGroupOld         -0.33      0.156    -2.1  3.5e-02
LR.z:AgeGroupOld    -0.29      0.136    -2.2  3.1e-02
NL = 0.14 + 0.52 * LR.z + -0.33 * AGOld + -0.29 * LR.z * AGOld
LR.z of 0 and AgeGroup Young: 0.14 + 0.52\(\times\)0 + -0.33\(\times\)0 + -0.29\(\times\)0\(\times\)0 = 0.14LR.z of 0 and AgeGroup Old: 0.14 + 0.52\(\times\)0 + -0.33\(\times\)1 + -0.29\(\times\)0\(\times\)1 = -0.19LR.z of 0.5 and AgeGroup Old: 0.14 + 0.52\(\times\)0.5 + -0.33\(\times\)1 +-0.29\(\times\)0.5\(\times\)1 = -0.075                 Estimate Std. Error t value Pr(>|t|)
(Intercept)          0.14      0.068     2.0  4.4e-02
LR.z                 0.52      0.111     4.7  4.7e-06
AgeGroupOld         -0.33      0.156    -2.1  3.5e-02
LR.z:AgeGroupOld    -0.29      0.136    -2.2  3.1e-02
Young AgeGroup, each unit increase of LR increases NL by 0.52Old AgeGroup, each unit increase of LR increases NL by 0.52 + -0.29 = 0.23LR slope is shifted downwards by 0.23 for the Old AgegroupLR is less beneficial for older people
m4 <- lm(NL ~ AgeGroup * Sex, data=saa) # We drop LR for simplicity (normally you would include it)
summary(m4) # no significant predictors
Call:
lm(formula = NL ~ AgeGroup * Sex, data = saa)
Residuals:
   Min     1Q Median     3Q    Max 
-3.147 -0.648  0.042  0.696  2.142 
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)          -0.0303     0.0930   -0.33     0.74
AgeGroupOld           0.2448     0.2052    1.19     0.23
SexMale               0.0337     0.1262    0.27     0.79
AgeGroupOld:SexMale  -0.3308     0.2718   -1.22     0.22
Residual standard error: 1 on 321 degrees of freedom
Multiple R-squared:  0.00546,   Adjusted R-squared:  -0.00384 
F-statistic: 0.587 on 3 and 321 DF,  p-value: 0.624
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.00844     0.0875  0.0965    0.923
AgeGroupOld  0.05616     0.1347  0.4171    0.677
SexMale     -0.03760     0.1119 -0.3362    0.737
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.0120     0.0628  -0.191    0.849
AgeGroupOld   0.0549     0.1344   0.408    0.683
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   0.0200     0.0829   0.241    0.810
SexMale      -0.0363     0.1117  -0.325    0.745
A:B) should be compared to the best model without that term
A + B, if both terms are significantA, if A is significant and B is notB, if B is significant and A is notA and B, if neither are significantA + B (if both are not significant), but may not be an improvement over the model without A and B.
A, B, or their interactionm0a <- lm(NL ~ 1, data=saa) # model without AgeGroup and Sex for comparison
anova(m0a, m4) # interaction is not supportedAnalysis of Variance Table
Model 1: NL ~ 1
Model 2: NL ~ AgeGroup * Sex
  Res.Df RSS Df Sum of Sq    F Pr(>F)
1    324 324                         
2    321 322  3      1.77 0.59   0.62
AgeGroup and Sex is not supportedAgeGroup is only significant if we also take into account the effect of LR
saa$Age.z <- (saa$Age - mean(saa$Age)) / sd(saa$Age) 
summary(m5 <- lm(NL ~ LR.z * Age.z, data=saa)) # Instead of AgeGroup we use numerical Age
Call:
lm(formula = NL ~ LR.z * Age.z, data = saa)
Residuals:
   Min     1Q Median     3Q    Max 
-3.004 -0.670  0.116  0.670  2.237 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.0714     0.0623    1.15   0.2520    
LR.z          0.4763     0.0923    5.16  4.3e-07 ***
Age.z        -0.1752     0.0654   -2.68   0.0078 ** 
LR.z:Age.z   -0.1242     0.0561   -2.21   0.0277 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.959 on 321 degrees of freedom
Multiple R-squared:  0.0882,    Adjusted R-squared:  0.0796 
F-statistic: 10.3 on 3 and 321 DF,  p-value: 1.62e-06
             Estimate Std. Error   t value Pr(>|t|)
(Intercept) -1.63e-16     0.0535 -3.05e-15 1.00e+00
LR.z         3.32e-01     0.0657  5.06e+00 7.11e-07
Age.z       -1.65e-01     0.0657 -2.52e+00 1.23e-02
Analysis of Variance Table
Model 1: NL ~ LR.z + Age.z
Model 2: NL ~ LR.z * Age.z
  Res.Df RSS Df Sum of Sq    F Pr(>F)  
1    322 300                           
2    321 295  1       4.5 4.89  0.028 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Model 1: NL ~ LR.z * AgeGroup
Model 2: NL ~ LR.z * Age.z
  Res.Df RSS Df Sum of Sq F Pr(>F)
1    321 296                      
2    321 295  0     0.724         
m5 provides a better fit (RSS lower)



  Q3 Q4 Q14 Q15 Q18 Q19 Q28
1  7  2   6   2   2   6   1
2  4  4   3   4   4   4   4
3  3  3   6   6   5   2   6
4  5  4   6   4   3   6   2
5  4  5   6   4   4   2   5
6  4  2   6   2   3   5   2
Some items ( Q3 Q19 ) were negatively correlated with the first principal component and 
probably should be reversed.  
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis   
 raw_alpha std.alpha G6(smc) average_r  S/N   ase mean   sd median_r
      0.41      0.37    0.63     0.078 0.59 0.039  4.2 0.69    0.042
     raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
Q3        0.74      0.69    0.73      0.27 2.18     0.02  0.10  0.36
Q4-       0.74      0.70    0.76      0.28 2.29     0.02  0.09  0.37
Q14       0.84      0.84    0.85      0.46 5.10     0.01  0.02  0.38
Q15-      0.77      0.73    0.80      0.31 2.67     0.01  0.12  0.37
Q18-      0.73      0.69    0.75      0.27 2.18     0.02  0.09  0.35
Q19       0.75      0.69    0.73      0.27 2.21     0.02  0.10  0.35
Q28-      0.71      0.67    0.73      0.26 2.06     0.02  0.08  0.35
R
Thank you for your attention!
https://www.martijnwieling.nl
m.b.wieling@rug.nl