Research Master—History of Linguistics 2008-2009

Classes on generative grammar

1. Early generative grammar (14/10)
2. Extended Standard Theory/Government and Binding Theory (28/10)
3. Minimalism (04/11)

Early Generative Grammar

5. The reception of Chomsky's ideas

In the US

(1) initially: benevolent (considered as a young American structuralist)

(2) soon: hostile (e.g. Texas Conference 1958)
 structuralists alienated by Chomsky’s attack on behaviorism

(3) 1960s: enthusiastic
 - perspective for language acquisition (Lees' review of *Syntactic Structures*)
 - emerging cognitive science
 - philosophical underpinnings (rationalism, humanism)
 - deep structure / surface structure schema

In Europe

(4) initially not much response (holistic approach of European structuralism)
 - emphasis on function/meaning

In The Netherlands

(5) Chomsky attacked by Reichling and Uhlenbeck

(6) Favorable notice in NRC by Schultink

(7) Students start reading Syntactic Structures / LSLT (Kraak, Klooster, Seuren)
 group around E.W. Beth and F. Staal

(8) 1966: first generative dissertation (Kraak)
 1968: Kraak & Klooster (textbook)

(9) Late 1960s: generative semantics as a unifying force (Dik)
 emphasis on meaning acceptable to European structuralists
(10) 1970: Chomsky visit, presents ‘Conditions on Transformations’
 students adopt autonomous syntax idea (Koster, Evers)

(11) 1970s: reshuffling of job market, generativists appointed everywhere
 Kraak: Nijmegen
 Verkuyl, Schultink: Utrecht
 Kooij: Leiden > Hoekstra, Bennis
 Van Riemsdijk: Tilburg > Koster, Everaert
 Heny: Groningen > Reuland
 Booij: VU
 Klooster: Amsterdam > Muysken, Den Besten

Extended Standard Theory and Government-Binding Theory

1. De rol van de semantiek

(1) Aspects meaning deep structure
 transformations
 surface structure sound

(2) Katz-Postal hypothesis: transformations do not change meaning

(3) emergence of abstract categories
 John leave > John left
 NEG John leave > John didn’t leave (negation not caused by transformation)
 Q John leave > Did John leave ? (question not by transformation)

(4) emphasis on meaning > lexical decomposition
 break = cause to break

(5) generative semantics: transformations operate on semantic building blocks
 (as opposed to ‘generative syntax’)

(6) alternative: interpretive semantics: transformations yield something to be interpreted
(7)
a. everyone in this room speaks two languages
b. two languages are spoken by everyone in this room

> meaning affected by the passive transformation

(8)
Chomsky’s reaction: lexicalism
transformations operating on words

(possible exception: inflectional morphology = weak lexicalism)

(9)
a. the growth of tomatoes (nominalization, derivational)
b. the growing of tomatoes (gerund, inflectional)

(10)
new model

\[\text{Lexicon} \rightarrow \text{DS} \leftarrow \text{phrase structure rules} \]

\[\text{transformations} \]

\[\text{sound} \leftarrow \text{S-structure} \rightarrow \text{meaning} \]

\[\text{PF} \leftarrow \text{LF} \]

(11)
LF: logical form (anaphora, scope, variable binding)

2. Conditions on transformations

(1)
Chomsky 1964: A-over-A principle

a. Mary saw the boy walking toward the railroad station (2x)
b. Which railroad station did Mary see the boy walking towards? (1x)
c. Who did you see [Mary and --]

(2)
Ross 1967: Constraints on variables in syntax
identifies a range of configurations blocking movement (islands)

(3)
Chomsky 1973: Conditions on transformations
unifies Ross’ conditions inventing general (abstract) conditions

a. subjacency: you can’t cross two bounding nodes
b. Comp-to-Comp condition: movement goes stepwise
(4) Structure preservingness: transformations do not affect structure movement is into an already existing position (substitution)

(5) Early generative grammar: Generalized Transformations adjunction of one clause to the next, causing complex structure

Now: slot for embedded clauses already present from the start > **recursion** (Katz & Fodor 1963)

(6) We can talk about structure in abstraction from concrete data > **X-bar theory**

(7) Starts a discussion about the nature of the clause (VP? S?)

(8) around 1980: functional elements (tense, complementizer, determiner) also subject to rules of X-bar theory

 > functional heads, functional projection
 > clause = projection of **TENSE** (IP or TP)
 > embedded clause = projection of **COMP** (CP)

(9) X-bar theory unites: structuralist distributionalism (constituency tests) traditional valency theory (selection requirement)

3. **Government and Binding theory**

(1) a. transformations curbed by diverse components

 X-bar theory
 locality theory (bounding): subejacency, Comp-to-Comp

b. grammar becomes a theory of components rather than a theory of data

(2) More components > less transformations

 Case theory
 Trace theory
 Theory of empty categories
 Binding theory (pronouns) **MOVE α**
 Control (move anything, anywhere)
 Structure (X-bar theory)
 Government (structural relations)
Components (modules) work as filters

Limiting computational power: economy (Chomsky 1989)
- triggers for movement
- fewest steps
- shortest steps (minimality)

Theory of components yields universal principles

Language variation: setting ‘switches’ in the principles = parameters

Huge impact on:
- a. typology
- b. language acquisition
- c. historical linguistics
- d. dialectology (microparameters)

1980s: floreshing period for generative grammar ...