The construction of layered derivations

Jan-Wouter Zwart
University of Groningen

1. SIMPLEST MERGE 2. ORDER, INFORMATION, MORPHOLOGY 3. ITERATION VS. RECURSION 4. LAYERED DERIVATIONS 5. OPACITY

1. Simplest Merge

(1) Every derivation needs
a. a set of elements N manipulated in the course of the derivation (numeration)
b. a procedure establishing relations among the members of N (merge)

(2) Simplicity
a. merge manipulates a single element from N at each step of the derivation
b. merge manipulates each element from N only once

(3) Concretely
a. \(N = \{ a, b, c, d, e \} \)
b. merge: split \(x \in N \) off from N
c. merge\(_1\) \(\langle a, \{ b, c, d, e \} \rangle \)
merge\(_2\) \(\langle a, \langle b, \{ c, d, e \} \rangle \rangle \)
merge\(_3\) \(\langle a, \langle b, \langle c, \{ d, e \} \rangle \rangle \rangle \)

etc. until we get \(\langle a, \langle b, \langle c, \langle d, \langle e, \varnothing \rangle \rangle \rangle \rangle \rangle = \langle a, b, c, d, e \rangle \)

(4) What drives/ends Merge?
 a. start: the need to create order (information) among the members of N
 b. end: the establishment of a total ordering of N

(5) Features
a. no need to assume uninterpretable features
b. no mysterious features (EPP)
c. no feature checking

(6) Deviation from survive-minimalism
a. no concept of survival (no remerge)
b. no feature-driven derivation (no crashing/stalling)
c. top-down (not crucial)

2. What merge yields

2.1 Order

(7) Why split yields an ordered pair
a. \(\{ a, \{ a, b \} \} \equiv \langle a, b \rangle \) (Kuratowski 1921, Fortuny 2007)
b. derivational history: set of elements merged grows at each step

\[(\text{cf. (3c)})\]
merge_1 \{ a \} derivation yields a nest of sets
merge_2 \{ a, b \} \{ a, \{ a, b \} \} = \{ a, b \}
etc.
ultimately an ordered n-tuple

(8) Linear Correspondence Axiom (revised from Kayne 1994)
\[\langle a, b \rangle \equiv [a\ b]\]

2.2 Information

(9) Derivational Approach to Syntactic Relations (Epstein 1995/1999)
Syntactic relations are a function of merge

(10) \(N = \{ \text{John, kissed, Mary} \} \) merge_1 \(\langle \text{John, \{ kissed, Mary \} } \rangle \)

(11) Generalization (\(N = \text{Numeration} \))
\(\text{Merge } \alpha \in N \) turns \(N \) into the dependent of \(\alpha \)

(12) Dependencies
predication, complementation, modification, scope, etc.

(13) The derivation yields a record of dependencies to be interpreted at the interfaces

2.3 Morphology

(14) Morphology after syntax
Morphology takes a syntactic object and returns a form

(15) Features
A form is selected from a paradigm on the basis of the features of the syntactic object

(16) 'Uninterpretable' features
a. \([\text{number}]\) on a predicate is not inherent, but a function of the dependency of a noun phrase
b. \([\text{number}]\) must be spelled out on a term of the predicate (often the verb)
c. uninterpretable features are properties emerging in the course of the derivation as a function of merge

3. Iteration vs. recursion

(17) Split-merge is not recursive but iterative

(18) Rule: ‘Split N’ (\(N \) constantly updated, cf. (3))

(19) What is recursive about a derivation?
Recursion: take the output of Derivation_1 and put it in the Numeration for Derivation_2
(cf. ‘Workbench’ idea of Putnam & Stroik 2008)

(20) Recursion is inevitable in all but the most elementary derivations
4. Layered derivations

(21) John’s mother loves him/*himself
The mother of John loves him/*himself

(22) \(N = \{ \text{John’s, mother, loves, PRON} \} \)
yields \(\langle \text{John’s, mother, loves, PRON} \rangle \)

(Zwart 2002: \(\text{him} = \text{spell-out of PRON, himself} = \text{spell-out of anaphoric PRON} \))

(23) \(N_1 = \{ \text{John’s, mother} \} \) yielding \(\langle \text{John’s, mother} \rangle = [\text{John’s mother}] \)
\(N_2 = \{ [\text{John’s mother}], \text{loves, PRON} \} \) yielding \(\langle [\text{John’s mother}], \text{loves, PRON} \rangle = (21) \)

(24) Parallel tree formation?
Impossible in split-merge

(25) Model of grammar (of each (sub)derivation)

(26) The output of a subderivation passes through the interfaces

(27) Idiosyncratic sound/meaning properties: output of a separate subderivation
(idioms not created ‘on the fly’ as in Svenonius 2005)

(28) Which elements are outputs of subderivations and why?

<table>
<thead>
<tr>
<th></th>
<th>IDIOSYNCRATIC SOUND/MEANING</th>
<th>CONFIGURATIONAL REASONS</th>
<th>INTERPRETIVE STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compounds</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>verbs (cf. Hale & Keyser)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idioms</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>specifiers</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>adjuncts</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>backgrounded material</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
(29) **A test: generalized integrity**
Terms of a member of a numeration are invisible to merge (cannot be split)

(30) if $N = \{ [\text{John's mother}], \text{does}, \text{love}, \text{Bill} \}$, split-merge never yields
*John's does mother love Bill

(31) a. Lexical integrity
b. Idiom integrity: *All trades he's a jack of
c. Subject/adjunct opacity (cf. Toyoshima 1997)
d. Opacity of backgrounded material (cf. Goldberg 2006, chapter 7)

(32) a. It bothered Sue [that the mayor smoked cigars]
 b. ??What did it bother Sue [that the mayor smoked] ?

(33) **The V-v complex**
a. Idiosyncratic sound/meaning pairing (kill * cause to become not alive)
b. Integrity (V-v conflation is exceptionless in most analyses)
c. It follows that arguments are not generated inside the V-v complex
d. Argument structure is the interpretation of a configuration (Hale & Keyser 1993)

(34) Allows for ‘base-generation’ of arguments in their Grammatical-Function (GF) position

5. **Opacity**

(35) **A’-movement raises problems**
a. Which car did they arrest the driver of (predicted: complement not output of sep. der.)
b. * Which car did the driver of cause a scandal (predicted: subject island)
c. Which car was the driver of arrested (predicted on bottom-up, not on top-down)
d. Which car did they see the driver of cause a scandal (not predicted)

(36) Observation: extraction out of subjects not universally disallowed and anyway better than
extraction out of adjuncts (Stepanov 2001)

(37) Further problem: connectivity effects show that wh-elements belong in a GF-position, not
in an argument position

(38) \textbf{Wen hast du gesehen ?} (German)
who:ACC have:2SG 2SG:NOM seen ‘Who did you see?’

(39) **Further observation: strange factors relevant to acceptability of A’-movement:**
a. discourse status (Erteschik-Shir 1973, Goldberg 2006)
b. event structure (Truswell 2007)
c. processing difficulty (Kluender 1998)
d. semantic factors (Szabolcsi & Zwarts 1993, Honcoop 1998)

(40) **How special is A’-movement?**

(41) a. A wh-element is a double atom
b. A wh-clause is a double atom
(42) \[N = \{ \text{who, you, saw} \} \text{ yields not } [\text{who you saw}] \]
\[\text{but } [\text{who } [\text{you saw}]] \]

(43) **Truswell facts**

a. What did John come in whistling?
b. * What did John work whistling?

(44) **Derivation of the adjunct clause**
\[N = \{ \text{whistling, what} \} \text{ yields } [[\text{whistling }][\text{what}]] \]

(45) **Next derivation gives a choice**
\[N_a = \{ [[\text{whistling}][\text{what}]], \text{did, John, [come in]} \} \]
\[N_b = \{ [\text{what}], \text{did, John, [come in]} \} \]
\[N_c = \{ \text{John, [come in], [whistling]} \} \]

(46) The success of (43a) is a function of the success of \(N_c \) in (45) yielding an interpretable object at the interfaces (i.e. representing a single event, Truswell's generalization)

(47) **Final derivation then**
\[N = \{ [\text{what}], \text{did, [John come in whistling]} \} \]

(48) **Relevance of backgrounding** (cf. (33))

a. ?? What did it bother Sue that the mayor smoked
b. What do you think that the mayor smoked
c. [what] [that the mayor smoked]
d. think + [that the mayor smoked] readily interpretable as a unit (verb of propositional content)
 bother Sue + [that the mayor smoked] more difficult, as the clause has presupposed content

(49) **Applicability to wh-islands**

a. * Who did you wonder why Bill kissed
b. \[N_1 = \{ \text{why, Bill, [kissed], who} \} \text{ yielding } [[\text{why}][\text{Bill kissed who}]] \]
c. to get (49a), who would have to be part of a double atom

(50) **Other example of a split in the output of a subderivation**

a. I saw \text{JOHN} the other day and \text{BILL}
b. \text{JOHN loves MARY} and \text{BILL SUE}

(51) **Split**

a. focus:
 \[
 \text{John} \quad \text{John, Mary}
 \]
b. focus-related topic (FRT, Tancredi 1992):
 \[
 \text{I saw x the other day} \quad x \text{ loves y}
 \]

(52) **Coordination**

a. unlike categories
b. sensitive to part of the output, namely a list of focus elements

(53) The \(N \) of the derivation yielding [and Bill], [and Bill Sue] consists of all and only the alternatives to the focus elements in the output of the derivation yielding [I saw John the other day], [John loves Mary]
6. Conclusion

(54) 1. the simplest derivations are layered
 2. the output of each subderivation is interpreted at the interfaces
 3. the output of a subderivation is in principle atomic, yielding generalized integrity
 4. A’-movement seems to require a noncanonical ‘double atom’ output, with conditions on
 acceptability sensitive to the possibility of merging part of the double atom separately

References

Hale, Ken and Samuel J. Keyser. 1993. On argument structure and the lexical expression of syntactic relations. In Hale
 & Keyser, eds., The view from Building 20: essays in linguistics in honor of Sylvain Bromberger, Cambridge: MIT
 Press, pp. 53-109.
Kuratowski, Kasimierz. 1921. Sur la notion de l'ordre dans la théorie des ensembles. Fundamenta Mathematicae 2, 161-
 UMissouri Kansas.
Svenonius, Peter. 2005. Extending the Extension Condition to discontinuous idioms. Linguistic Variation Yearbook 5, 227-
 263.
Szabolcsi, Anna and Frans Zwarts. 1993. Weak islands and an algebraic semantics for scope-taking. Natural Language
 Semantics 1, 235-284.
 Proceedings of WCCFL 16, 505-519.
Zwart, Jan-Wouter. 2002. Issues relating to a derivational theory of binding. In Epstein & Seely, eds., Derivation and

Faculty of Arts, PO Box 716, NL-9700AS Groningen, The Netherlands
http://www.let.rug.nl/zwart ● c.j.w.zwart @ rug.nl