

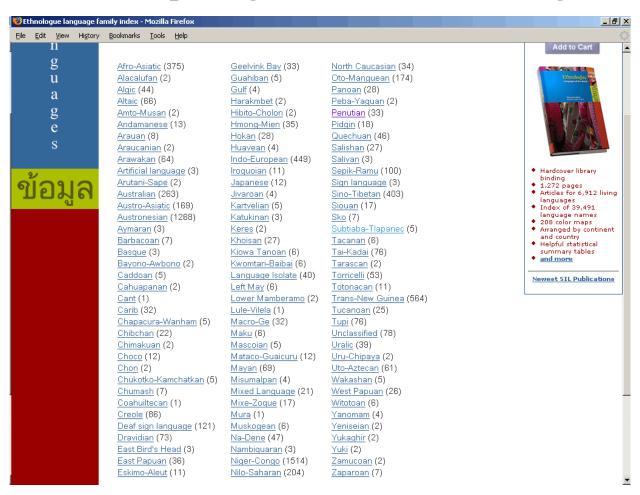
Covering diversity: some notes on sampling technique

Jan-Wouter Zwart University of Groningen

TIN-dag, Utrecht, February 2 2008

Sampling

- selection out of the world's languages (for survey/comparison)
- use some stratification (language families)
- avoid bias (genetic, geographic)
- **cover diversity** (leave nothing out)


Practical issues

- classification (splitting vs. lumping)
- existence of language descriptions
- availability of language descriptions
- ideal sample size (small for time, large for coverage)

faculty of arts

Conservative (splitting) classification: Ethnologue

Example: Uralic

Ruhlen (1987) *A guide to the world's languages I: classification*. Stanford.

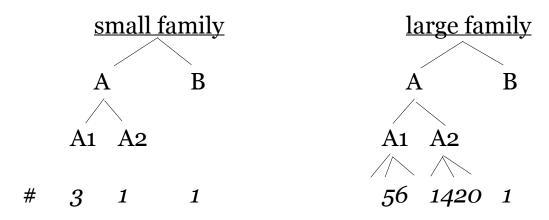
```
Ethnologue (splitting)
                            Ruhlen 1987 (lumping)
                            Yukaghir (1)
Finnic (11)
Finno-Ugric (1)
                            Uralic (23)
Mari (2)
                                Samoyed (4)
Mordvin (2)
                                     N
Permian (3)
                                Finno-Ugric (19)
    Komi
    Udmurt
                                     Ugric
Sami (11)
                                         Hungarian
                                         Ob-Ugric [Xanty, Mansi]
    E
    S
                                     Finnic
    W
                                         Permic
Samoyed (7)
                                         Volgaic [Mari, Mordvin]
Khanti
                                         N Finnic
Mansi
                                              Saamic
                                              Baltic Finnic
```


Previous work on diversity coverage: Rijkhoff et al 1993

- how many languages from each family should the sample contain?
- representative number (based on size) modulo **diversity value** (DV)
- DV calculated by inspecting the family tree
- classification: Ruhlen (1987)
- DV: average number of nodes per level in the family tree
- weighted for tree depth (higher levels count heavier)

Rijkhoff, Bakker, Hengeveld, Kahrel (1993) 'A method of language sampling.' *Studies in Language* 17, 169-203.

Questions left open


- what is the actual diversity coverage for a given sample?
- how does addition/deletion of a language affect diversity coverage?
- does size representativity adjusted for DV suffice for covering diversity?

E.g. in a 250 language sample, Uralic-Yukaghir is represented by a single language (according to Rijkhoff et al.'s system).

Intuitively, we want small families to be overrepresented and large families to be underrepresented.

Size/representation

- Rijkhoff et al: 1 lg. from small family (regardless size of the sample)
- But diversity coverage requires that we include a language from A and B in both families, so at least 2 lgs. from the small family

Basic approach

- Rationale: every split (in the tree) represents an instance of variation
- splitting classification
- Rule 1: include a language from each family, including every isolated lg. (cf. Rijkhoff et al. 1993:179)
- Rule 2: within a family, include a language from each subfamily (recursive)

First pass

- Count the number of branches represented (again with weighting for depth)
- Problem: more deeply embedded languages yield more points, but not better diversity coverage

level 1 Khoisan	<i>level 2</i> Hadsa Sandawe	level 3	level 4	level 5
	S Africa	C	Hain//um Kwadi Nama Tshu-Kwe	4 more
		N		•
		S	!Kwi	
			Hua	

Adjustment: counting oppositions

- A branch is represented only if it represents an **instance of variation**
- In the Khoisan example, both Hadsa and Hua represent only one instance of variation: Khoisan vs. non-Khoisan (Level 1)
- If both Hadsa and Hua are present, there is an instance of variation at Level 2 (Hadsa vs. S Africa) as well as at Level 1 (Khoisan vs. non-Khoisan)
- If both Hua and !Kwi are present, there is no instance of variation at Level 2, but there is one at Level 1 and Level 4
- If both Hua and Nama are present, there is an instance of variation at Level 3 (CS Africa vs. SS Africa), but not at level 2 or 4

Scoring

Khoisan (100)									
Hadsa (33)	Sandawe (33)	S Africa (33)							
		C (11)	N (11)	S(11)				
				!Kwi	Hua				

• maximal score per level: 1. 100 2. 100 3. 33 4. 22 divisor over 4 levels = 255 (not 400!)

• if the sample includes: the score is: and the diversity coverage:

Hadsa	100/0/0/0	100/255 = .39
Hua	100/0/0/0	100/255 = .39
Hadsa, <mark>Hua</mark>	100/66/0/0	166/255 = .65
Hua, !Kwi	100/0/0/11	111/255 = .44
Hua, Nama	100/0/22/0	122/255 = .48

Evaluating a sample

#	PHYLUM	LGS	%	SAMPLE 6							
				lgs	/267	repr	opp	div	cov		
	AFRICA										
1	Afro-Asiatic	375	5.43	12	4.49	.032	270	367	.71		
2	Khoisan	27	0.39	2	0.75	.074	122	255	.48		
3	Niger-Congo	1514	21.90	31	11.61	.020	270	384	.70		
4	Nilo-Saharan	204	2.95	7	2.62	.034	163	295	.55		
		2120	30.67	52	19.48	.025			.61		

TOTAL										
		6912	100	267	100	.039			. 64	

• Khoisan is overrepresented, but has relatively poor coverage

Earlier sample

#	PHYLUM	LGS	%	SAMPLE 4							
				lgs	/214	repr	opp	div	cov		
	AFRICA										
1	Afro-Asiatic	375	5.43	8	3.74	.021	235	367	.64		
2	Khoisan	27	0.39	2	0.93	.074	122	255	.48		
3	Niger-Congo	1514	21.90	26	12.15	.017	254	384	.66		
4	Nilo-Saharan	204	2.95	5	2.50	.025	150	295	.51		
		2120	30.67	41	19.16	.019			.57		

TOTAL										
		6912	100	214	100	.031				

Comparison

	number of lgs		representation		coverage		
	<i>S</i> 4	<i>S</i> 6	<i>S</i> 4	<i>S</i> 6	S4	<i>S</i> 6	
afro-as.	8	12	.021	.032	.64	.71	
khoisan	2	2	.074	.074	.48	.48	
niger-cg	26	31	.017	.020	.66	.70	
nilo-sah	5	7	.025	.034	.51	·55	
total (sample)	41 (214)	52 (267)	.019 (.031)	.025 (.039)	·57	.61 (.64)	

- sample growth: 11 lgs.
- effects on representation and coverage made visible

Conclusion

- diversity coverage may be calculated by scoring represented oppositions (sister pairs in a language family tree)
- the method
 - provides a useful tool for comparing (stages of) samples
 - makes it possible to evaluate the effects of adding/deleting languages
- view the sample used in the NWO-research program 'Dependency in Universal Grammar' at:

www.let.rug.nl/zwart/diug

Faculty of Arts, PO Box 716, 9700 AS Groningen c.j.w.zwart@rug.nl ● www.let.rug.nl/zwart