Embedded verb-second revisited: a layered derivations account

Jan-Wouter Zwart

30th TABU-dag

Groningen, 12 June 2009

(1) Jan zei dat hij kon AFF cry normal: ... dat hij wel kon janken

» a colloquial variant in all Germanic V2 languages

(2) Heit sei dat do moast soks net leauwe (Frisian)

dad said that you should not believe such things.

normal: ... datsto soks net leauwe

(3) Ich kann mir denken, er hat ihr etwas erzählt (German)

'I can imagine he told her something.'

normal: ... daß er ihr etwas erzählt

(4) Han sa att Lisa hade troligen rest till Rom (Swedish)

'He said that Lisa had probably gone to Rome.'

normal: ... att Lisa troligen hade rest till Rom

This talk

embedded verb-second (EV2)

» properties

» previous analyses

» layered derivations

» layered derivations analysis of EV2

This talk

embedded verb-second

» properties

» the complementizer is inert

» the EV2 clause is opaque

» excluded in certain contexts

no complementizer agreement (Frisian)

(7)
Heit sei dat- st do soks net leauwe must: dad said that you should not believe such things.

(8)
Heit sei dat- st do moast soks net leauwe dad said that you must: such not believe

(cf. (2))

islands for extraction

(9)
Hy sei dat dizze oersetting net maklik he said that this translation not easy reads

(10)
Hy sei dat dizze oersetting lêst net maklik he said that this translation reads not easy

(11) Hokker oersetting ... Which translation did he say doesn't read easily?

a. TT TT ... sei hy dat net maklik said he that not easy reads

b. XX XX ... sei hy dat lêst net maklik said he that reads not easy

excluded in certain contexts

(11)
Jan betreurde dat hij dat boek kende John regretted that he that book knew

(12)
Jan betreurde dat hij kende dat boek John regretted that he knew that book

(13)
Jan dacht niet dat hij dat boek kende John didn't think that he knew that book

(14)
Jan dacht niet dat hij kende dat boek John didn't think that he knew that book

(15)
Jan had willen zeggen dat hij dat boek kende John would have said that he knew that book

(16)
Jan had willen zeggen dat hij kende dat boek John would have said that he knew that book

irrealis contexts

(15)
John had want say that he that book knew

(16)
John had want say that he knew that book

subject clauses

(17)
Wrijven helpt niet als je maagpijn hebt rubbing helps not if you stomach ache have

(18)
Wrijven helpt niet als je hebt maagpijn rubbing does not help if you have a stomach ache

adjunct clauses

(17)
Dat Jan dat boek kent is verrassend that John that book knows is surprising

(18)
Dat Jan kent dat boek is verrassend that John knows that book is surprising

De Haan & Weerman op.cit. op Frisian; Zwart (1997:230f) Morphosyntax of Verb Movement on Dutch

Embedded verb-second

previous analyses

(11) Embedded root phenomena
(12) Hybrid coordination/subordination
(13) CP-recursion
(14) Embedded verb-second
Embedded clauses showing root phenomena

Conclusion

Any analysis of EV2 will have to derive the fact that the embedded clause is really the main event.

Layered derivations

A layered derivation is:

« a network of derivations, such that

the output of one derivation is part of the input of another derivation

i.e. a recursive derivation

Hypothesis: all derivations are inevitably layered

What is a derivation?

A procedure that converts a set of items into a string

two stages:

» merging elements (yielding a structure)

» linearizing the structure (yielding a string)

Model of grammar

set of items { a, b } (Numeration)

Merge

++ ++

a, b

,, ,,

(Computational system C

HL)

linearization / a b / (Interface)

Test: complement preposing

John knew that book not.

John regrettet that he that book not knew

Test: negation of main assertion

Between that book not do you know that book

Do you regard that book not

If you regard that book not do you know that book

If you know that book not do you know that book

Where is a derivation?
Model of grammar

What do we predict?

D1
- set of items \{a, b\} (Numeration)
- Merge
- ++ ++
- a, b
- (CHL)
- linearization / a b / (Interface)

D2
- set of items \{a, b\} (Numeration)
- Merge
- ++ ++
- a, b
- (CHL)
- linearization / a b / (Interface)

Upshot

Something that is complex and structured in the context of derivation 1 (D1) may be simple and atomic in the context of derivation 2 (D2).

Examples

- (complex) words: compounds, derived words, hybrids (three-affix)
- (simple) words: atomic, intrinsic
- derived items: derived words, hybrids
- concepts: (complex) subjects and adjuncts

How do we know?

- Interface effects:
 - special and atomic
 - special meaning effect (e.g. discourse status, idiom)

- Constituency:
 - you can't merge/move part of a lexical item

What do we predict?

- potential idiom properties: left-branching, right-branching
- potential functions of cases:
 - D1: linearization at Interface
 - D2: linearization at the Interface

A layered derivations analysis of embedded verb-second?

- first hypothesis:
 - the EV2 clause is the output of a separate derivation
- advantages:
 - explains verb-second in the model of grammar assumed here.
 - distinguished property of derivation outputs (of EV2)
 - special sound effect (e.g. linear order, prosody)
 - special meaning effect (e.g. discourse status, idiom)

Potential idiom effects:

- potential idiom effects:
 - you can't merge/move part of a lexical item
problems: verb-second is not a property of derivation outputs. Subject/adjunct clauses must be derivation outputs (cf. (30)).

The complementiser is inert. It doesn't give us the Hooper & Thompson generalization: the EV2 clause is the main event.

two hypotheses:
1. the matrix clause is a separate derivation. The complementiser is inert.
2. the matrix clause is the output of a separate derivation, the matrix clause = D1, turned into a single item without a complement clause being merged, the embedded clause = D2, to which the output of D1 is just an add-on.

The layered derivations analysis:

D1: set of items: { Jan, zei } (Numeration)
Merge ++ ++
Jan, zei ,,, (CHL)
linearization / Jan zei / (Interface)

D2: set of items: { Jan zei, hij, niet, kende, dat, boek } (Numeration)

ev2 layered derivation analysis

advantages:
» explains verb-second linearization at the interface concluding D2
» yields the Hooper & Thompson generalization: the embedded clause is the main assertion

the complementiser is inert

opacity

distribution

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?

The complementiser is inert.

The complementiser is inert.

Distribution

Opacity

D1

D2

set of items: { Jan, zei, het, mel, boek }

Inflection

Jan zei

(clit.

Inflection

Jan, zei

(set of items: { Jan, zei } (Numeration))

The layered derivations analysis of ev2: can we explain its properties?
long-distance movement = movement into matrix clause

but the matrix clause is output of D1, i.e. an atom

facts follow from Lexical Integrity

##

no movement into or out of a 'lexical' item

('lexical' = output of previous derivation)

restricted distribution

The layered derivations analysis of EV2:
can we explain its properties?

Arguably.

Thank you.

Faculty of Arts, PO Box 716, NL-9700AS, Groningen, The Netherlands

c.j.w.zwart@rug.nl

http://www.let.rug.nl/zwart/